Một ô tô đi quãng đường dài 840 km sau khi đi đc nửa quãng đường, xe dừng lại nghỉ 30 phút nên quãng đường còn lại xe đó phải tăng văn tốc thêm 2km/h thì đến B đúng hẹn ? Tính vận tốc băn đầu của ô tô đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc ban đầu của ô tô là x(km/h)(Điều kiện: x>0)
Thời gian để đi nửa quãng đường còn lại với vận tốc ban đầu là:
\(\dfrac{210}{x}\)(h)
Thời gian thực tế để đi nửa quãng đường còn lại là:
\(\dfrac{210}{x+2}\)(h)
Vì khi đi được nửa quãng đường xe nghỉ 15' nhưng vẫn đến B đúng giờ nên ta có phương trình:
\(\dfrac{210}{x+2}+\dfrac{1}{4}=\dfrac{210}{x}\)
\(\Leftrightarrow\dfrac{840x}{4x\left(x+2\right)}+\dfrac{x\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{840\left(x+2\right)}{4x\left(x+2\right)}\)
Suy ra: \(840x+x^2+2x=840x+1680\)
\(\Leftrightarrow x^2+842x-840x-1680=0\)
\(\Leftrightarrow x^2+2x-1680=0\)
\(\Leftrightarrow x^2+2x+1-1681=0\)
\(\Leftrightarrow\left(x+1\right)^2-41^2=0\)
\(\Leftrightarrow\left(x+1-41\right)\left(x+1+41\right)=0\)
\(\Leftrightarrow\left(x-40\right)\left(x+42\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-40=0\\x+42=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=40\left(thỏa\right)\\x=-42\left(loại\right)\end{matrix}\right.\)
Vậy: Vận tốc ban đầu là 40km/h
Đổi 3 phút = 1/20 ( h )
Gọi vận tốc dự định của ô tô là x ( x > 0 ) ( km/h )
Vận tốc của ô tô sau khi tăng thêm 2km/h là : x+2
Thời gian dự định đến đích là : 120x120x
Thời gian đi nửa quãng đường đầu là : 60x60x
Thời gian đi nửa quãng đường còn lại là : 120x+2120x+2
Theo đề bài ta có phương trình:
60x+60x+2+120=120x60x+60x+2+120=120x
Tới đậy tự giải tiếp phương trình nha :)))
Goij x (km) là nửa quãng đường AB
T/g ô tô đi từ A -> B là : 4 giờ 30phuts = 9/2 giờ
Thời gian ô tô đi nửa quãng đường đầu là \(\dfrac{x}{40}\) giờ
Thời gian ô tô đi nửa quãng đường sau là \(\dfrac{x}{50}\) giờ
Theo bài ra ta có PT \(\dfrac{x}{40}+\dfrac{x}{50}=\dfrac{9}{2}\)
\(\Leftrightarrow x=100\)
Vậy độ dài quãng đường AB là 200 km
Gọi vận tốc ô tô ban đầu là x (đk x>0) (km/h)
thời gian đi nửa quãng đường còn lại với vận tốc ban đấu là :\(\frac{420}{x}\)(giờ)
thời gian đi nửa quãng đường còn lại là :\(\frac{420}{x+2}\)(giờ)
Vì đi được nửa quảng đường xe nghỉ 30 phút nhưng vẫn đến B đúng giờ ,ta có pt:
\(\Rightarrow\)\(\frac{420}{x+2}+\frac{1}{2}=\frac{420}{x}\)
\(\Rightarrow\)\(840x+x\left(x+2\right)-840\left(x+2\right)=0\)
\(\Leftrightarrow\)\(x^2+2x-1680=0\)
\(\Rightarrow\)\(x1=40\left(nhận\right)\)và \(x2=-42\left(loại\right)\)
\(Vậy\)vận tốc ban đấu của ô tô là 40 km/h