K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2016

Gọi vận tốc ô tô ban đầu là x (đk  x>0)   (km/h) 

thời gian đi nửa quãng đường còn lại với vận tốc ban đấu là :\(\frac{420}{x}\)(giờ)

thời gian đi nửa quãng đường còn lại là :\(\frac{420}{x+2}\)(giờ)

Vì đi được nửa quảng đường xe nghỉ 30 phút nhưng vẫn đến B đúng giờ ,ta có pt:

\(\Rightarrow\)\(\frac{420}{x+2}+\frac{1}{2}=\frac{420}{x}\)

\(\Rightarrow\)\(840x+x\left(x+2\right)-840\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x^2+2x-1680=0\)

\(\Rightarrow\)\(x1=40\left(nhận\right)\)và \(x2=-42\left(loại\right)\)

\(Vậy\)vận tốc ban đấu của ô tô là 40 km/h

Gọi vận tốc ban đầu của ô tô là x(km/h)(Điều kiện: x>0)

Thời gian để đi nửa quãng đường còn lại với vận tốc ban đầu là:

\(\dfrac{210}{x}\)(h)

Thời gian thực tế để đi nửa quãng đường còn lại là: 

\(\dfrac{210}{x+2}\)(h)

Vì khi đi được nửa quãng đường xe nghỉ 15' nhưng vẫn đến B đúng giờ nên ta có phương trình:

\(\dfrac{210}{x+2}+\dfrac{1}{4}=\dfrac{210}{x}\)

\(\Leftrightarrow\dfrac{840x}{4x\left(x+2\right)}+\dfrac{x\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{840\left(x+2\right)}{4x\left(x+2\right)}\)

Suy ra: \(840x+x^2+2x=840x+1680\)

\(\Leftrightarrow x^2+842x-840x-1680=0\)

\(\Leftrightarrow x^2+2x-1680=0\)

\(\Leftrightarrow x^2+2x+1-1681=0\)

\(\Leftrightarrow\left(x+1\right)^2-41^2=0\)

\(\Leftrightarrow\left(x+1-41\right)\left(x+1+41\right)=0\)

\(\Leftrightarrow\left(x-40\right)\left(x+42\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-40=0\\x+42=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=40\left(thỏa\right)\\x=-42\left(loại\right)\end{matrix}\right.\)

Vậy: Vận tốc ban đầu là 40km/h

7 tháng 5 2018
éo biết
26 tháng 1 2023

Để giải hệ phương trình theo phương pháp thế, ta cần tìm ra 2 biến là vận tốc dự định (v1) và vận tốc tăng thêm (v2) sau khi nghỉ 30 phút.

Quãng đường đi đầu tiên: 120km / 2 = 60kmThời gian đi đầu tiên: 60km / v1 = t1Quãng đường đi thứ hai: 120km - 60km = 60kmThời gian đi thứ hai: 60km / (v1 + 20km/h) = t2

Ta có 2 phương trình:

t1 + t2 + 0.5 = 8 (giờ) (với thời gian nghỉ là 30 phút)v1 * t1 + (v1 + 20km/h) * t2 = 120km

Ta có thể giải hệ phương trình bằng cách sử dụng phương pháp thế, bằng cách giải một biến trong hai phương trình trên và thay vào phương trình còn lại.

Vận tốc dự định của ô tô là: v1 = 80 km/h.

17 tháng 4 2020

Gọi vận tốc của người đi xe đạp lúc đầu là x(x>0)

Thời gian dự định đi hết quãng đường AB là : \(\frac{30}{x}\left(h\right)\)

Thời gian người đó đi hết nửa quãng đường đầu là : \(\frac{15}{x}\left(h\right)\)

Thời gian người đó đi hết nửa quãng đường sau là : \(\frac{15}{x+2}\left(h\right)\)

15 phút=\(\frac{1}{4}\)h Ta có: 

\(\frac{30}{x}=\frac{15}{x}+\frac{1}{4}+\frac{15}{x+2}\)

\(\Leftrightarrow\frac{15}{x}-\frac{15}{x+2}=\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}=\frac{1}{60}\)

\(\Leftrightarrow\frac{2}{x\left(x+2\right)}=\frac{1}{60}\)

\(\Leftrightarrow x\left(x+2\right)=120\)

\(\Leftrightarrow\orbr{\begin{cases}x=-12\\x=10\end{cases}\Rightarrow x=10}\)

21 tháng 4 2022

cặc