K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Mình ko chắc nhen

Xét mẫu:

2999/1 + 2998/2 + 2997/3 + ... + 1/2999

2999 + 2998/2 + 2997/3 + ... + 1/2999

( 1 + 2998/2 ) + ( 1 + 2997/3 ) + ... + ( 1 + 1/2999 ) + 1  [Giải thích nek:chia số tự nhiên 2999 thành 2999 số 1 rồi gộp vào các phân số]

3000/2 + 3000/3 + ... + 3000/2999 + 3000/3000

3000 . ( 1/2 + 1/3 + ... + 1/2999 + 1/3000 )

Giờ thì phần tử và phần trong ngoặc của mẫu đã giống nhau nên loại bỏ

=>N=1/3000

12 tháng 5 2016

1 lần nữa là mình ko chắc nhen

Ta có \(A=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+...+\frac{1}{2999}}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+1+...+1\right)+\frac{2998}{2}+...+\frac{1}{2999}}\)

              \(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+\frac{2998}{2}\right)+\left(1+\frac{2997}{3}\right)+...+\left(1+\frac{1}{2999}\right)+\frac{3000}{3000}}\)

              \(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{3000}}\)

               = \(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)

Vậy A= \(\frac{1}{3000}\)

1 tháng 4 2016

Ai đó giúp tui đi , sáng mai kiểm tra ròi :'( 

11 tháng 3 2017

Câu 1:

B = \(\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}\)

\(\frac{3000-1}{1}+\frac{3000-2}{2}+\frac{3000-3}{3}+...+\frac{3000-2999}{2999}\)

\(\left(\frac{3000}{1}+\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{2999}\right)-\left(\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{2999}{2999}\right)\)

\(3000+3000.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)-2999\)

\(3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)+\frac{3000}{3000}\)

\(3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)

11 tháng 3 2017

các bn ơi 

giúp mk đi mà

+.+

2 tháng 3 2020

Đề là 1/3000 nhé ~

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\left(\frac{2998}{2}+1\right)+\left(\frac{2997}{3}+1\right)+...+\left(\frac{1}{2999}+1\right)+1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\frac{3000}{2}+\frac{3000}{3}+....+\frac{3000}{2999}+\frac{3000}{3000}}\)

\(=\frac{1}{3000}\)

2 tháng 3 2020

Đề bài bn ?

2 tháng 4 2023

1+1=3 :)))

6 tháng 10 2016

giải:

ta có :

\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}\)

\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}.\frac{2\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{3\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}=\frac{2}{3}\)

 
8 tháng 7 2016

các bn ơi giải giúp mình đi mà