Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ dãy trên ta có:
(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\)) < vì không có cách nhập hỗn số nên mình đổi ra phân số >
= 2 + 3 + 4 + 5 + 6 + ..........................+ 51
Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số
Chia ra : 50 : 2 = 25 cặp
ta có( 51 + 2 ) x 25 =1325
Vậy tổng trên có kết quả bằng 1325 (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )
c) \(\left[3\frac{1}{6}-\left(0,06\cdot7\frac{1}{2}+6\frac{1}{4}\cdot0,24\right)\right]:\left(1\frac{2}{3}+2\frac{2}{3}\cdot1\frac{3}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{3}{50}\cdot\frac{15}{2}+\frac{25}{4}\cdot\frac{6}{25}\right)\right]:\left(\frac{5}{3}+\frac{8}{3}\cdot\frac{7}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{9}{20}+\frac{3}{2}\right)\right]:\left(\frac{5}{3}+\frac{14}{3}\right)\)
\(=\left(\frac{19}{6}-\frac{39}{20}\right):\frac{19}{3}=\frac{73}{60}:\frac{19}{3}=\frac{73}{60}\cdot\frac{3}{19}=\frac{73}{380}\)
Bài giải
\(c,\text{ }\left[3\frac{1}{6}-\left(0,06\cdot7\frac{1}{2}+6\frac{1}{4}\cdot0,24\right)\right]\text{ : }\left(1\frac{2}{3}+2\frac{2}{3}\cdot1\frac{3}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{3}{50}\cdot\frac{15}{2}+\frac{25}{4}\cdot\frac{6}{25}\right)\right]\text{ : }\left(\frac{5}{3}+\frac{8}{3}\cdot\frac{7}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{9}{20}+\frac{3}{2}\right)\right]\text{ : }\left(\frac{5}{3}+\frac{56}{12}\right)\)
\(=\left(\frac{19}{6}-\frac{39}{20}\right)\text{ : }\frac{19}{3}\)
\(=\left(\frac{190}{60}-\frac{117}{60}\right)\cdot\frac{3}{19}=\frac{73}{60}\cdot\frac{3}{19}=\frac{73}{380}\)
giải:
ta có :
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}\)
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}.\frac{2\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{3\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}=\frac{2}{3}\)