Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+...+\frac{1}{2999}}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+1+...+1\right)+\frac{2998}{2}+...+\frac{1}{2999}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+\frac{2998}{2}\right)+\left(1+\frac{2997}{3}\right)+...+\left(1+\frac{1}{2999}\right)+\frac{3000}{3000}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{3000}}\)
= \(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)
Vậy A= \(\frac{1}{3000}\)
Câu 1:
B = \(\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}\)
= \(\frac{3000-1}{1}+\frac{3000-2}{2}+\frac{3000-3}{3}+...+\frac{3000-2999}{2999}\)
= \(\left(\frac{3000}{1}+\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{2999}\right)-\left(\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{2999}{2999}\right)\)
= \(3000+3000.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)-2999\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)+\frac{3000}{3000}\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)
Đề là 1/3000 nhé ~
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\left(\frac{2998}{2}+1\right)+\left(\frac{2997}{3}+1\right)+...+\left(\frac{1}{2999}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\frac{3000}{2}+\frac{3000}{3}+....+\frac{3000}{2999}+\frac{3000}{3000}}\)
\(=\frac{1}{3000}\)
\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)
\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)
\(=\frac{2}{4}=\frac{1}{2}\)
\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)
\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)
\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)
\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)
\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)
\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\) \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)
\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\) \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)
\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\) \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)
\(=\frac{58}{7}-\frac{487}{63}\) \(=\frac{577}{45}-\frac{280}{45}\)
\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\) \(=\frac{33}{5}\)
\(P=M-N\)
\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)
\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)
\(\Rightarrow P=\frac{-272}{45}\)
Vậy P = \(\frac{-272}{45}\)
\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)
\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)
\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)
\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)
\(=\frac{3}{8}+\frac{5}{8}=1\)
Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !
Mình ko chắc nhen
Xét mẫu:
2999/1 + 2998/2 + 2997/3 + ... + 1/2999
2999 + 2998/2 + 2997/3 + ... + 1/2999
( 1 + 2998/2 ) + ( 1 + 2997/3 ) + ... + ( 1 + 1/2999 ) + 1 [Giải thích nek:chia số tự nhiên 2999 thành 2999 số 1 rồi gộp vào các phân số]
3000/2 + 3000/3 + ... + 3000/2999 + 3000/3000
3000 . ( 1/2 + 1/3 + ... + 1/2999 + 1/3000 )
Giờ thì phần tử và phần trong ngoặc của mẫu đã giống nhau nên loại bỏ
=>N=1/3000
1 lần nữa là mình ko chắc nhen