Tổng \(S=\left(-\dfrac{1}{5}\right)^0+\left(-\dfrac{1}{5}\right)^1+\left(-\dfrac{1}{5}\right)^2+...+\left(-\dfrac{1}{5}\right)^{2021}\)có giá trị là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25
\(a,\left(7+3\dfrac{1}{4}-\dfrac{3}{5}\right)+\left(0,4-5\right)-\left(4\dfrac{1}{4}-1\right)\)
\(=\left(7+\dfrac{13}{4}-\dfrac{3}{5}\right)-\dfrac{23}{5}-\left(\dfrac{17}{4}-1\right)\)
\(=7+\dfrac{13}{4}-\dfrac{3}{5}-\dfrac{23}{5}-\dfrac{17}{4}+1\)
\(=\left(7+1\right)+\left(\dfrac{13}{4}-\dfrac{17}{4}\right)-\left(\dfrac{3}{5}+\dfrac{23}{5}\right)\)
\(=8-\dfrac{4}{4}-\dfrac{26}{5}\)
\(=7-\dfrac{26}{5}\)
\(=\dfrac{9}{5}\)
\(b,\dfrac{2}{3}-\left[\left(-\dfrac{7}{4}\right)-\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\right]\)
\(=\dfrac{2}{3}-\left(-\dfrac{7}{4}-\dfrac{1}{2}-\dfrac{3}{8}\right)\)
\(=\dfrac{2}{3}-\left(-\dfrac{14}{8}-\dfrac{4}{8}-\dfrac{3}{8}\right)\)
\(=\dfrac{2}{3}-\left(-\dfrac{21}{8}\right)\)
\(=\dfrac{2}{3}+\dfrac{21}{8}\)
\(=\dfrac{79}{24}\)
\(c,\left(9-\dfrac{1}{2}-\dfrac{3}{4}\right):\left(7-\dfrac{1}{4}-\dfrac{5}{8}\right)\)
\(=\left(\dfrac{36}{4}-\dfrac{2}{4}-\dfrac{3}{4}\right):\left(\dfrac{56}{8}-\dfrac{2}{8}-\dfrac{5}{8}\right)\)
\(=\dfrac{31}{4}:\dfrac{49}{8}\)
\(=\dfrac{62}{49}\)
\(d,3-\dfrac{1-\dfrac{1}{7}}{1+\dfrac{1}{7}}=3-\dfrac{\dfrac{7}{7}-\dfrac{1}{7}}{\dfrac{7}{7}+\dfrac{1}{7}}=3-\left(\dfrac{6}{7}:\dfrac{8}{7}\right)=3-\dfrac{3}{4}=\dfrac{9}{4}\)
Sửa đề: 1/R(2023)
R(3)=1*3
R(4)=2*4
R(5)=3*5
...
R(2022)=2020*2022
R(2023)=2021*2023
=>\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{2021\cdot2023}+\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{2020\cdot2022}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2021\cdot2023}+\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2020\cdot2022}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2022}{2023}+\dfrac{505}{1011}\right)\simeq0.7496\)
e: \(=\left(\dfrac{18}{37}+\dfrac{19}{37}\right)+\left(\dfrac{8}{24}+\dfrac{2}{3}\right)-\dfrac{47}{24}=2-\dfrac{47}{24}=\dfrac{1}{24}\)
f: \(=-8\cdot\dfrac{1}{2}:\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=-4:\dfrac{13}{12}=\dfrac{-48}{13}\)
g: \(=\dfrac{4}{25}+\dfrac{11}{2}\cdot\dfrac{5}{2}-\dfrac{8}{4}=\dfrac{4}{25}+\dfrac{55}{4}-2=\dfrac{1191}{100}\)
Theo kinh nghiệm của tui thì.......mấy cái bài này hay dễ ra kết quả = 1 với = 0 nhiều lắm:)
tính ra r bt