cho a>0 b>0 c>0 và a+b+c=6
tìm GTLN của biểu thức P=(a-1)/a+(b-1)/b+(c-4)/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4M=\dfrac{4}{\left(a+b\right)+\left(a+c\right)}+\dfrac{4}{\left(a+b\right)+\left(b+c\right)}+\dfrac{4}{\left(c+a\right)+\left(b+c\right)}\)
\(\le\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{b+c}\)
\(=\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
=> 8M \(\le\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=8\)
=> \(M\le1\)
Dấu "=" xảy ra <=> a = b = c = 3/4
\(\dfrac{1}{2a+b+c}=\dfrac{1}{a+a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Tương tự:
\(\dfrac{1}{a+2b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)
Cộng vế:
\(M\le\dfrac{1}{16}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)
\(M_{max}=1\) khi \(a=b=c=\dfrac{3}{4}\)
Áp dụng BĐT cosi, ta có
\(\sqrt{3a+1}=\dfrac{1}{2}\sqrt{4\left(3a+1\right)}\le\dfrac{1}{2}.\dfrac{4+3a+1}{2}=\dfrac{3a+5}{4}\)
CMTT, ta có \(\sqrt{3b+1}\le\dfrac{3b+5}{4};\sqrt{3c+1}\le\dfrac{3c+5}{4}\)
Từ đó suy ra \(K\le\dfrac{3\left(a+b+c\right)+15}{4}=6\)
Dấu "=" xảy ra khi a=b=c=1
Vậy...
ta có BĐT \(\sqrt{3a+1}\ge\dfrac{a\left(\sqrt{10}-1\right)}{3}+1\)
\(\Leftrightarrow a\left(3-a\right)\ge0đúng\forall a\)
CMRTT, ta có
\(\sqrt{3b+1}\ge\dfrac{b\left(\sqrt{10}-1\right)}{3}+1\)
\(\sqrt{3c+1}\ge\dfrac{c\left(\sqrt{10}-1\right)}{3}+1\)
Do đó \(K\ge\dfrac{\left(a+b+c\right)\left(\sqrt{10}-1\right)}{3}+3=\sqrt{10}+2\)
Dấu "=" xảy ra khi a=3, b=c=0
Vậy...
\(a^4+b^4+b^4+b^4\ge4\sqrt[4]{a^4b^{12}}=4ab^3\)
Tương tự:
\(b^4+3c^4\ge4bc^3\) ; \(c^4+3a^4\ge4ca^3\)
Cộng vế:
\(M\le a^4+b^4+c^4=1\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt[4]{3}}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\frac{4}{a+b+c}=4.\frac{4}{6}=\frac{8}{3}\)
\(\Rightarrow-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le\frac{-8}{3}\)
\(\Rightarrow M=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)
\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)
\(\Rightarrow M\le\frac{1}{3}\)
Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}}}\)
Vậy GTLN của M là 1/3
Áp dụng BĐT Cauchy cho 2 số dương:
\(\sqrt{2a+b}=\sqrt{\left(2a+b\right).1}\le\dfrac{2a+b+1}{2}\)
CMTT: \(\sqrt{2b+c}\le\dfrac{2b+c+1}{2},\sqrt{2c+a}\le\dfrac{2c+a+1}{2}\)
\(\Rightarrow T=\sqrt{2a+b}+\sqrt{2b+c}+\sqrt{2c+a}\le\dfrac{2a+b+1+2b+c+1+2c+a+1}{2}=\dfrac{3\left(a+b+c\right)+3}{2}=\dfrac{3+3}{2}=\dfrac{6}{2}=3\)
\(maxT=3\Leftrightarrow2a+b=2b+c=2c+a=1=a+b+c\)
\(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Áp dụng bđt Cauchy - Schwarz ta có:\(Q=\dfrac{2-2a^2b^2}{\left(1+a^2\right)\left(1+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(1-ab\right)\left(1+ab\right)}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(bc+ca\right)\left(1+ab\right)}{\left(a+b\right)^2\left(b+c\right)\left(c+a\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c\left(1+ab\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2c\left(1+ab\right)}{\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}\le\dfrac{2c\left(1+ab\right)}{\sqrt{\left(ab+1\right)^2\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c}{\sqrt{c^2+1}}+\dfrac{2}{\sqrt{c^2+1}}=\dfrac{2\left(c+1\right)}{\sqrt{c^2+1}}\le\dfrac{2\left(c+1\right)}{\sqrt{\dfrac{\left(c+1\right)^2}{2}}}=2\sqrt{2}\)Dấu "=" xảy ra khi a = b = \(\sqrt{2}-1;c=1\).
Vậy..
Bạn ghi đề sai rồi nhé!
P=(a+b+c-1-1-4)/a+b+c =( 6-6)/6 = 0