K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

moi hok lop 6

Ap dụng định lý PYTAGO vào mỗi tam giác có trong hình , ta có:

AB^2+AE^2 =BE^2                  AB^2+AC^2=BC^2

AD^2+AC^2=DC^2                  AD^2+AE^2=DE^2

Do  AB^2+AE^2+AD^2+AC^2=AB^2+AC^2+AD^2+AE^2

Nên BE^2+DC^2=BC^2+DE^2( đpcm)

quên chuk vẽ hình :D

B A C D E

27 tháng 9 2019

A B C E D

Áp dụng định lí Pytago cho các tam giác vuông ta có :

\(CD^2=AC^2+DA^2\)

\(BC^2=AB^2+AC^2\)

\(\Rightarrow CD^2-BC^2=\left(AC^2+AD^2\right)-\left(AB^2+AC^2\right)=AD^2-AB^2\left(1\right)\)

------------

\(ED^2=DA^2+AE^2\)

\(BE^2=AE^2+AB^2\)

\(\Rightarrow ED^2-BE^2=\left(DA^2+AE^2\right)-\left(AE^2+AB^2\right)=AD^2-AB^2\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow CD^2-BC^2=ED^2-BE^2\left(đpcm\right)\)

Chúc bạn học tốt !!!

15 tháng 3 2018

Cho tam giác ABC vuông góc tại A. Trên AB,BC lần lượt lấy D,E. CMR CD2-BC2=ED2-BE2

12 tháng 6 2015

tam giác BDE: M là tđ(trung điểm) DE, N là tđ BE => MN là đtb(đường trung bình) của tam giác BDE.=> MN//DB  <=> MN//BA

tương tự c/m MQ là đtb của tam giác DEC=> MQ//EC hay MQ//AC. mà AC vuông góc AB=> MN vuông góc PQ.=> góc NMQ =90. tương tự theo cách đtb thì  các góc còn lại của tứ giác MNPQ =90=> là hình chữ nhật

MN là đtb=> MN=1/2 DB. MQ=1/2 EC mà EC=DB=> MN=DB

=> tg là hình vuông(dhnb)

lần sau vẽ hình nha! làm bài đã dài r lại còn phải vẽ hình nữa :(

30 tháng 12 2017

A B C D E O H M F P Q 1 1 K 1 1

1) Ta có: ^BAC+^BAD=^BAC+^CAE=^BAC=900 => ^DAC=^BAE

Xét \(\Delta\)DAC & \(\Delta\)BAE: AD=AB; ^DAC=^BAE; AC=AE => \(\Delta\)DAC=\(\Delta\)BAE (c.g.c)

=> CD=BE (2 cạnh tương ứng)

Gọi CD giao BE tại P, AB giao CD tại Q

Do \(\Delta\)DAC=\(\Delta\)BAE (cmt) => ^D1=^B1 (2 góc tương ứng)

Xét 2 tam giác: \(\Delta\)DAQ và \(\Delta\)BPQ: ^DQA=^BQP (đối đỉnh), ^D1=^B1

=> ^DAQ=^BPQ => ^BPQ=900 hay CD vuông góc với BE.

2) Trên tia đối của AM lấy điểm F sao cho AF=2AM.

Chứng minh được: \(\Delta\)ABM=\(\Delta\)FCM (c.g.c) => AB=FC. Mà AB=AD => FC=AD

=> ^ABM=^FCM (2 góc tương ứng). Mà 2 góc này so le trong => AB//FC

=> ^BAC+^ACF=1800. (1)

Lại có: ^BAC+^BAD+^CAE+^EAD=3600 => ^EAD+^BAC=3600-^BAD-^CAE=1800 (2)

Từ (1) và (2) => ^ACF=^EAD.

Xét \(\Delta\)ACF & \(\Delta\)EAD: AC=EA; ^ACF=^EAD; CF=AD => \(\Delta\)ACF=\(\Delta\)EAD (c.g.c)

=> AF=DE (2 cạnh tương ứng). Thấy AF=2AM => DE=2AM.

3) Gọi AM cắt DE tại K

Ta có: \(\Delta\)ACF=\(\Delta\)EAD (cmt) => ^A1=^E1.

Mà ^A1+^EAK=900 => ^E1+^EAK=900 => \(\Delta\)EKA vuông tại K hay AM vuông góc với DE.

4) Có: ^ACH+^HAC=900. Mà ^OAE+^HAC=900 => ^ACH=^OAE hay ^ACM=^OAE.

Xét \(\Delta\)AMC & \(\Delta\)EOA có: AC=AE, ^A1=^E1; ^ACM=^OAE => \(\Delta\)AMC=\(\Delta\)EOA (g.c.g)

=> AM=EO (2 cạnh tương ứng).

Lại có: DE=2AM (cmt) => DE=2EO (O\(\in\)DE) hay  là trung điểm của DE (đpcm).

1 tháng 1 2018

Cảm ơn nhé!