Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ap dụng định lý PYTAGO vào mỗi tam giác có trong hình , ta có:
AB^2+AE^2 =BE^2 AB^2+AC^2=BC^2
AD^2+AC^2=DC^2 AD^2+AE^2=DE^2
Do AB^2+AE^2+AD^2+AC^2=AB^2+AC^2+AD^2+AE^2
Nên BE^2+DC^2=BC^2+DE^2( đpcm)
1) Ta có: ^BAC+^BAD=^BAC+^CAE=^BAC=900 => ^DAC=^BAE
Xét \(\Delta\)DAC & \(\Delta\)BAE: AD=AB; ^DAC=^BAE; AC=AE => \(\Delta\)DAC=\(\Delta\)BAE (c.g.c)
=> CD=BE (2 cạnh tương ứng)
Gọi CD giao BE tại P, AB giao CD tại Q
Do \(\Delta\)DAC=\(\Delta\)BAE (cmt) => ^D1=^B1 (2 góc tương ứng)
Xét 2 tam giác: \(\Delta\)DAQ và \(\Delta\)BPQ: ^DQA=^BQP (đối đỉnh), ^D1=^B1
=> ^DAQ=^BPQ => ^BPQ=900 hay CD vuông góc với BE.
2) Trên tia đối của AM lấy điểm F sao cho AF=2AM.
Chứng minh được: \(\Delta\)ABM=\(\Delta\)FCM (c.g.c) => AB=FC. Mà AB=AD => FC=AD
=> ^ABM=^FCM (2 góc tương ứng). Mà 2 góc này so le trong => AB//FC
=> ^BAC+^ACF=1800. (1)
Lại có: ^BAC+^BAD+^CAE+^EAD=3600 => ^EAD+^BAC=3600-^BAD-^CAE=1800 (2)
Từ (1) và (2) => ^ACF=^EAD.
Xét \(\Delta\)ACF & \(\Delta\)EAD: AC=EA; ^ACF=^EAD; CF=AD => \(\Delta\)ACF=\(\Delta\)EAD (c.g.c)
=> AF=DE (2 cạnh tương ứng). Thấy AF=2AM => DE=2AM.
3) Gọi AM cắt DE tại K
Ta có: \(\Delta\)ACF=\(\Delta\)EAD (cmt) => ^A1=^E1.
Mà ^A1+^EAK=900 => ^E1+^EAK=900 => \(\Delta\)EKA vuông tại K hay AM vuông góc với DE.
4) Có: ^ACH+^HAC=900. Mà ^OAE+^HAC=900 => ^ACH=^OAE hay ^ACM=^OAE.
Xét \(\Delta\)AMC & \(\Delta\)EOA có: AC=AE, ^A1=^E1; ^ACM=^OAE => \(\Delta\)AMC=\(\Delta\)EOA (g.c.g)
=> AM=EO (2 cạnh tương ứng).
Lại có: DE=2AM (cmt) => DE=2EO (O\(\in\)DE) hay là trung điểm của DE (đpcm).
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE\(\perp\)BC
c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
Suy ra: AK=EC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE
và AK=EC
nên BK=BC
moi hok lop 6