K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

tam giác BDE: M là tđ(trung điểm) DE, N là tđ BE => MN là đtb(đường trung bình) của tam giác BDE.=> MN//DB  <=> MN//BA

tương tự c/m MQ là đtb của tam giác DEC=> MQ//EC hay MQ//AC. mà AC vuông góc AB=> MN vuông góc PQ.=> góc NMQ =90. tương tự theo cách đtb thì  các góc còn lại của tứ giác MNPQ =90=> là hình chữ nhật

MN là đtb=> MN=1/2 DB. MQ=1/2 EC mà EC=DB=> MN=DB

=> tg là hình vuông(dhnb)

lần sau vẽ hình nha! làm bài đã dài r lại còn phải vẽ hình nữa :(

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).a) Chứng minh PCMQ là hình chữ nhật b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.Bài 2: CHo tam giác ABC. Gọi O là...
Đọc tiếp

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!

Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật 
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.

Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.

Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.

0

a: Xet ΔBCD có

M,N lần lượtlà trung điểm của BC,CD

nên MN là đường trung bình

=>MN//BD và MN=BD/2

Xét ΔEBD có EP/ED=EQ/EB

nên PQ//BD và PQ/BD=EP/ED=1/2

=>MN//PQ và MN=PQ

Xét ΔDEC có DP/DE=DN/DC

nên PN//EC và PN=1/2EC

=>PN=1/2BD=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

PN=PQ

=>MNPQ là hình thoi

b: NP//AC

=>góc QPN=góc BAC

=>góc NMP=góc EAF

=>PM//AF

c: Xét ΔAIK có

AF vừa là đường cao, vừa là phân giác

nên ΔAIK cân tại A

a: Xet ΔBCD có

M,N lần lượtlà trung điểm của BC,CD

nên MN là đường trung bình

=>MN//BD và MN=BD/2

Xét ΔEBD có EP/ED=EQ/EB

nên PQ//BD và PQ/BD=EP/ED=1/2

=>MN//PQ và MN=PQ

Xét ΔDEC có DP/DE=DN/DC

nên PN//EC và PN=1/2EC

=>PN=1/2BD=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

PN=PQ

=>MNPQ là hình thoi

b: NP//AC

=>góc QPN=góc BAC

=>góc NMP=góc EAF

=>PM//AF

c: Xét ΔAIK có

AF vừa là đường cao, vừa là phân giác

nên ΔAIK cân tại A

12 tháng 11 2016

Chỉ ra hướng làm thôi nhé ^^!:

a) Áp dụng đường trung bình của tam giác để giải (đáp án: hình thoi)

b)  Chứng minh PM và AF cùng vuông góc với BE => đpcm

c) QN cắt AB ở B và AC ở E rồi mà...??!!!,.....,,,...,,?/.., 

a: Xet ΔBCD có

M,N lần lượtlà trung điểm của BC,CD

nên MN là đường trung bình

=>MN//BD và MN=BD/2

Xét ΔEBD có EP/ED=EQ/EB

nên PQ//BD và PQ/BD=EP/ED=1/2

=>MN//PQ và MN=PQ

Xét ΔDEC có DP/DE=DN/DC

nên PN//EC và PN=1/2EC

=>PN=1/2BD=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

PN=PQ

=>MNPQ là hình thoi

b: NP//AC

=>góc QPN=góc BAC

=>góc NMP=góc EAF

=>PM//AF

c: Xét ΔAIK có

AF vừa là đường cao, vừa là phân giác

nên ΔAIK cân tại A

a: Xet ΔBCD có

M,N lần lượtlà trung điểm của BC,CD

nên MN là đường trung bình

=>MN//BD và MN=BD/2

Xét ΔEBD có EP/ED=EQ/EB

nên PQ//BD và PQ/BD=EP/ED=1/2

=>MN//PQ và MN=PQ

Xét ΔDEC có DP/DE=DN/DC

nên PN//EC và PN=1/2EC

=>PN=1/2BD=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

PN=PQ

=>MNPQ là hình thoi

b: NP//AC

=>góc QPN=góc BAC

=>góc NMP=góc EAF

=>PM//AF

c: Xét ΔAIK có

AF vừa là đường cao, vừa là phân giác

nên ΔAIK cân tại A

25 tháng 9 2018

Bài khá dài đó.

Sorry nhé mik mới lớp 6 ak nên ko bít, tha lỗi nha!

ý kiến gì thì nhắn tin cho mik mai 7g

pp, ngủ ngon!

14 tháng 10 2019

Bạn Nữ hoàng Elsa lửa bn k biết thì đừng trả lời nhé

30 tháng 10 2021

a: Xét ΔDEB có

P là trung điểm của DE

Q là trung điểm của BE

Do đó: PQ là đường trung bình của ΔDEB

Suy ra: PQ//DB và \(PQ=\dfrac{DB}{2}\left(1\right)\)

Xét ΔDCB có 

N là trung điểm của CD

M là trung điểm của BC

Do đó: NM là đường trung bình của ΔDCB

Suy ra: NM//DB và \(NM=\dfrac{DB}{2}\left(2\right)\)

Từ (1) và (2) suy ra NM//PQ và NM=PQ

hay NMQP là hình bình hành