K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

7x=3.2y+17x=3.2y+1

Xét x<0x<0
Đặt t = -x pt trở thành:
1=7t(3.2y+1)1=7t(3.2y+1)
Vì 2y>0,7t≥1⇒VP≥12y>0,7t≥1⇒VP≥1 Phương trình vô nghiệm.

Xét x≥0⇒y≥1x≥0⇒y≥1 ta có:
7x=3.2y+17x=3.2y+1
66 đồng dư với −1−1 theo module 77
⇒6.2(y−1)=3.2y⇒6.2(y−1)=3.2y đồng dư với −2(y−1)−2(y−1) theo module 77
Mặt khác ta lại có 3.2y+13.2y+1 chia hết cho 7
⇒2(y−1)−1⇒2(y−1)−1 chia hết cho 7
Đặt 2(y−1)=7m⇒2(y−1)=7m+12(y−1)=7m⇒2(y−1)=7m+1 (1)
Vì m nguyên ⇒y≥1⇒y≥1
Với y=1⇒x=1,m=0y=1⇒x=1,m=0
Với y>1y>1 ta có VT luôn chia hết cho 2 => m lẻ, m=2k+1m=2k+1
PT (1) trở thành 2(y−1)=14m+8⇔2(y−2)=7k+42(y−1)=14m+8⇔2(y−2)=7k+4 
Vì k nguyên => y≥2y≥2 (2)
VT chia hết cho 2 => VP chia hết cho 2 => k chẳn, k=2nk=2n
⇒2(y−2)=14n+4⇒2(y−2)=14n+4
biện luận tương tự => n chẳn , n = 2p
2(y−3)=14p+2⇒2(y−4)=7p+12(y−3)=14p+2⇒2(y−4)=7p+1
Vì p nguyên ⇒y≥4⇒y≥4 (2)
Nếu y>4⇒y>4⇒ VT luôn chia hết cho 2, VP luôn không chia hết cho 2
⇒y≤4⇒y≤4 (3)
Từ (2) và (3) suy ra y=4⇒x=2y=4⇒x=2

Vậy phương trình có nghiệm (1,1) (2,4)

\(\dfrac{2+3}{x}hay2+\dfrac{3}{x}\)  vậy

2 tháng 5 2021

cái 2+\(\dfrac{3}{x}\)

tham khảo https://olm.vn/hoi-dap/detail/2037215608.html

#Học-tốt

31 tháng 12 2019

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

=> \(\frac{xy+yz+xz}{xyz}=1\)

=> xy + yz + xz - xyz = 0 (1)

=> y(x + z) + xy(1 - z) = 0

=> y[x + z + (1 - z).x] = 0

=> \(\orbr{\begin{cases}y=0\left(\text{loại}\right)\\x+z+x\left(1-z\right)=0\end{cases}\Rightarrow x\left(2-z\right)+z=0\Rightarrow\left(x-1\right)\left(2-z\right)=-2}\)

Lại có \(x;z\inℕ^∗\Rightarrow\hept{\begin{cases}x-1\inℕ^∗\Leftrightarrow x>1\\2-z\inℕ^∗\Leftrightarrow z< 2\end{cases}}\)(2)

Từ (1) ta có : -2 = (-2).1  = (-1).2 

Lập bảng xét các trường hợp

x - 1-121-2
2 - z2-1-21
x0(loại)32-3(loại)
z0(loại)343
y\(y\in\varnothing\)321(loại)

Vậy các cặp (x;y;z) thỏa mãn là : (3;3;3) ; (2;4;2) ; (2;2;4) ; (4;2;2)