K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

7x=3.2y+17x=3.2y+1

Xét x<0x<0
Đặt t = -x pt trở thành:
1=7t(3.2y+1)1=7t(3.2y+1)
Vì 2y>0,7t≥1⇒VP≥12y>0,7t≥1⇒VP≥1 Phương trình vô nghiệm.

Xét x≥0⇒y≥1x≥0⇒y≥1 ta có:
7x=3.2y+17x=3.2y+1
66 đồng dư với −1−1 theo module 77
⇒6.2(y−1)=3.2y⇒6.2(y−1)=3.2y đồng dư với −2(y−1)−2(y−1) theo module 77
Mặt khác ta lại có 3.2y+13.2y+1 chia hết cho 7
⇒2(y−1)−1⇒2(y−1)−1 chia hết cho 7
Đặt 2(y−1)=7m⇒2(y−1)=7m+12(y−1)=7m⇒2(y−1)=7m+1 (1)
Vì m nguyên ⇒y≥1⇒y≥1
Với y=1⇒x=1,m=0y=1⇒x=1,m=0
Với y>1y>1 ta có VT luôn chia hết cho 2 => m lẻ, m=2k+1m=2k+1
PT (1) trở thành 2(y−1)=14m+8⇔2(y−2)=7k+42(y−1)=14m+8⇔2(y−2)=7k+4 
Vì k nguyên => y≥2y≥2 (2)
VT chia hết cho 2 => VP chia hết cho 2 => k chẳn, k=2nk=2n
⇒2(y−2)=14n+4⇒2(y−2)=14n+4
biện luận tương tự => n chẳn , n = 2p
2(y−3)=14p+2⇒2(y−4)=7p+12(y−3)=14p+2⇒2(y−4)=7p+1
Vì p nguyên ⇒y≥4⇒y≥4 (2)
Nếu y>4⇒y>4⇒ VT luôn chia hết cho 2, VP luôn không chia hết cho 2
⇒y≤4⇒y≤4 (3)
Từ (2) và (3) suy ra y=4⇒x=2y=4⇒x=2

Vậy phương trình có nghiệm (1,1) (2,4)

20 tháng 5 2017

Không mất tính tổng quát ta giả sử \(x\ge y\)

Ta có:

\(x^2< x^2+8y\le x^2+8x< x^2+8x+16=\left(x+4\right)^2\)

\(\Rightarrow x^2+8y=\left(x+1\right)^2or\left(x+2\right)^2or\left(x+3\right)^2\)

PS: Vì e là CTV nên a chỉ gợi ý thôi nha. Phần còn lại e thử tự nghĩ xem sao nhé. A giải quyết cho e phần khó nhất rồi đấy :)

4 tháng 8 2019

Anh Alibaba Nguyễn, giải tìm x ntn vậy, em mới tìm được y thôi

5 tháng 7 2019

\(4x^2+4x+y^2-6y=24\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)=34\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34=3^2+5^2\)

\(TH1:\hept{\begin{cases}\left(2x+1\right)^2=3^2\\\left(y-3\right)^2=5^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=8\end{cases}}\)

\(TH2:\hept{\begin{cases}\left(2x+1\right)^2=5^2\\\left(y-3\right)^2=3^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)

Vay.....

\(4x^2+4x+y^2-6y=24\)

\(\Leftrightarrow4x^2+4x+y^2-6y-24=0\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)-34=0\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34\)

Mà \(34=3^2+5^2=\left(-3\right)^2+\left(-5\right)^2\)

Vì là nghiệm nguyên dương nên:

\(\left(2x+1\right)^2+\left(y-3\right)^2=3^2+5^2\)\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\orbr{\begin{cases}\\\end{cases}}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x+1=3\\y-3=5\end{cases}}\)hoặc     \(\orbr{\begin{cases}2x+1=5\\y-3=3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=2\\y=8\end{cases}}\)         hoặc     \(\orbr{\begin{cases}2x=4\\y=6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\y=8\end{cases}}\)           hoặc      \(\orbr{\begin{cases}x=2\\y=6\end{cases}}\)

Vậy các cặp số (x;y) là: (1;8);(2;6)

NV
5 tháng 3 2023

\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)

\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)

\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)

Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)

\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau

Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP

\(\Rightarrow4y^2+6y-3=k^2\)

\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)

\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)

Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn

Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)

Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)

22 tháng 11 2019

\(x^2+2y^2-3xy+2x-4y+3=0\)

\(\Leftrightarrow4x^2+8y^2-12xy+8x-16y+12=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)-y^2+8x-16y+12=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+4\left(2x-3y\right)+4-\left(y^2-4y+4\right)+6=0\)

\(\Leftrightarrow\left(2x-3y+2\right)^2-\left(y-2\right)^2+6=0\)

\(\Leftrightarrow\left(2x-3y+2-y+2\right)\left(2x-3y+2+y-2\right)=-6\)

\(\Leftrightarrow\left(2x-4y+4\right)\left(2x-2y\right)=-6\)

\(\Leftrightarrow\left(x-2y+2\right)\left(x-y\right)=-\frac{3}{2}\)

Đến đây ta thấy vô lý

P/S:is that true ?

13 tháng 2 2022

=-12 mà CTV

5 tháng 7 2019

Ta có: 

\(x^2-6x+y^2-10y=27\)

<=> \(x^2-2.y.3+9+y^2-2.y.5+25-9-25=27\)

<=> \(\left(x-3\right)^2+\left(y-5\right)^2=61\)

<=> \(\left(x-3\right)^2+\left(y-5\right)^2=5^2+6^2\)

Do x, y nguyên dương 

=> x-3 >-3; y-5 >-5 

TH1: \(\hept{\begin{cases}\left(x-3\right)^2=5^2\\\left(y-5\right)^2=6^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=5\\y-5=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=11\end{cases}}\)(tm)

TH2: \(\hept{\begin{cases}\left(x-3\right)^2=6^2\\\left(y-5\right)^2=5^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=6\\y-5=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=9\\y=10\end{cases}}\)(tm)