K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tham khảo https://olm.vn/hoi-dap/detail/2037215608.html

#Học-tốt

31 tháng 12 2019

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

=> \(\frac{xy+yz+xz}{xyz}=1\)

=> xy + yz + xz - xyz = 0 (1)

=> y(x + z) + xy(1 - z) = 0

=> y[x + z + (1 - z).x] = 0

=> \(\orbr{\begin{cases}y=0\left(\text{loại}\right)\\x+z+x\left(1-z\right)=0\end{cases}\Rightarrow x\left(2-z\right)+z=0\Rightarrow\left(x-1\right)\left(2-z\right)=-2}\)

Lại có \(x;z\inℕ^∗\Rightarrow\hept{\begin{cases}x-1\inℕ^∗\Leftrightarrow x>1\\2-z\inℕ^∗\Leftrightarrow z< 2\end{cases}}\)(2)

Từ (1) ta có : -2 = (-2).1  = (-1).2 

Lập bảng xét các trường hợp

x - 1-121-2
2 - z2-1-21
x0(loại)32-3(loại)
z0(loại)343
y\(y\in\varnothing\)321(loại)

Vậy các cặp (x;y;z) thỏa mãn là : (3;3;3) ; (2;4;2) ; (2;2;4) ; (4;2;2)

17 tháng 12 2016

Không mất tính tổng quát ta giả sử x\(\le y\le\) z

=> 1/x \(\ge\)1/y \(\ge\) 1/z

=> 1/x + 1/x + 1/x \(\ge\) 1/x + 1/y + 1/z = 1

=> 3/x \(\ge\) 3/3

=> x \(\le3\) (1)

Có: 1/x < 1 do 1/x + 1/y + 1/z = 1

=> x > 1 (2)

Từ (1) và (2) mà x nguyên dương => x = 2 hoặc x = 3

+ Nếu x = 2 thì 1/y + 1/z = 1 - 1/2 = 1/2

Có: 1/y + 1/y \(\ge\) 1/y + 1/z = 1/2

=> 2/y \(\ge\)2/4

=> y \(\le\) 4 (3)

Lại có: 1/y < 1/2 do 1/y + 1/z = 1/2

=> y > 2 (4)

Từ (3) và (4) mà y nguyên dương nên y = 3 hoặc y = 4

Giá trị tương ứng của z là 6; 4

Tương tự như vậy với x = 3 ta tìm được y = z = 3

Vậy ...

 

 

13 tháng 9 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\\\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\\\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\end{cases}}\)

\(P=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

\(=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)

\(=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{z}+\frac{1}{y}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=y.\frac{-1}{y}+x.\frac{-1}{x}+z.\frac{-1}{z}\)

\(=-1-1-1=-3\)

13 tháng 9 2019

P+3=\(\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1=\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)

P+3=\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0.\left(x+y+z\right)=0\)

=> P=\(-3\)

Chuc ban hoc tot

12 tháng 4 2016

Câu 1: xy + x - y = 4

<=> (xy + x) - (y+ 1) = 3

<=> x(y+1) - (y + 1) = 3

<=> (y + 1) (x - 1) = 3

Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.

Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:

* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)

* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)

Vậy x = y = 2.

Câu 2:

Ta có:

 (a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0

Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c

5 tháng 3 2018

 \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)

8 tháng 3 2016

Câu 1: x=-2;-1

Câu 2:

Câu 3: x=20

y=16

z=12

Câu 4: 0 bộ

8 tháng 3 2016
Ở câu 2 viết 43/30 dưới dạng liên phân số rồi đối chiếu kết quả để tìm x,y,z( vì mỗi phân số chỉ viết dược dưới dạng 1 liên phân số
28 tháng 12 2015

x=2

y=3

z=6

28 tháng 12 2015

làm ơn làm phước tick cho mình lên 210 điểm hỏi đáp đi

8 tháng 4 2018

sửa lại \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)     nhé

đề yêu cầu làm gì bạn 

1 tháng 1 2016

chtt

 

 

 

1 tháng 1 2016

chtt nha! mik mới học lớp 6 thui!

20 tháng 2 2019

easy lắm 

Công vế theo vế ta được : x+y+y+z+x+z=\(\frac{-7}{6}\)+\(\frac{1}{4}\)+\(\frac{1}{12}\)=\(\frac{-5}{6}\)

Suy ra 2.(x+y+z)=\(\frac{-5}{6}\) suy ra x+y+z=\(\frac{-5}{12}\)

suy ra x+y=\(\frac{-5}{12}\)-z ; y+z=\(\frac{-5}{12}\)-x ; x+z=\(\frac{-5}{12}\)-y

Thay vào ta có : \(\frac{-5}{12}\)-z=\(\frac{-7}{6}\) suy ra z= \(\frac{3}{4}\)

                          \(\frac{-5}{12}\)-x=\(\frac{1}{4}\) suy ra x=\(\frac{-2}{3}\)

                            \(\frac{-5}{12}\)-y=\(\frac{1}{12}\) suy ra y=\(\frac{-1}{2}\)

easy Hok tốt nhé b