Cho hình chóp S.ABCD có đáy là nửa lục giác đều ABCD nội tiếp trong đường kính AD=2a và có cạnh S A ⊥ ( A B C D ) . Tính khoảng cách từ B đến mặt phẳng (SCD)
A. a 2
B. a 3
C. a 2 2
D. a 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Từ giả thiết ta có AB=BC=CD=a
Kẻ AH ⊥ SC
Do AD là đường kính nên AC ⊥ CD và A C = A D 2 - C D 2 = a 3
Do SA ⊥ CD, AC ⊥ CD => CD ⊥ (SAC)=> CD ⊥ AH
=>AH ⊥ SC, AH ⊥ CD => AH ⊥ (SCD)
⇒ d A ( S C D ) = A H = A S . A C A S 2 + A C 2 = a 6 . a 3 3 a = a 2
Kéo dài AB cắt CD tại E. Dễ thấy B là trung điểm của AE.
⇒ d B , S C D d ( A , S C D ) = B E A E = 1 2 ⇒ d B , ( S C D ) = a 2 2
a) Vì ABCD là nửa lục giác đều nội tiếp trong đường tròn đường kính AD = 2a nên ta có: AD //BC và AB = BC = CD = a, đồng thời AC ⊥ CD, AB ⊥ BD, AC = BD = a√3.
Như vậy
Trong mặt phẳng (SAC) dựng AH ⊥ SC tại H ta có AH ⊥ CD và AH ⊥ SC nên AH ⊥ (SCD)
Vậy AH = d(A,(SCD))
Xét tam giác SAC vuông tại A có AH là đường cao, ta có:
Vậy A H 2 = 2 a 2 ⇒ A H = a 2
Gọi I là trung điểm của AD ta có BI // CD nên BI song song với mặt phẳng (SCD). Từ đó suy ra d(B, (SCD)) = d(I,(SCD)).
Mặt khác AI cắt (SCD) tại D nên
Do đó:
b) Vì AD // BC nên AD // (SBC), do đó d(AD, (SBC)) = d(A,(SBC))
Dựng AD ⊥ BC tại E ⇒ BC ⊥ (SAE)
Dựng AD ⊥ SE tại F ta có:
Vậy AF = d(A,(SBC)) = d(AD, (SBC))
Xét tam giác vuông AEB ta có:
Xét tam giác SAE vuông tại A ta có:
Chọn đáp án B
Trong (ABCD), kẻ Cx//BD => BD//(SCx)
Vì là nửa lục giác đều nên AB = BC = CD = a.
Và
Mặt khác:
Gọi
Ta có:
Trong (SAF), kẻ
Tam giác AFE có: AE = 3a và
Ta có: => tam giác SAF vuông cân tại A.
Vậy:
Đáp án D
Cách 1: Tư duy tự luận (Tính khoảng cách dựa vào hình chiếu)
Ta có
A B // C D A B ⊄ S C D C D ⊂ S C D ⇒ A B // S C D ⇒ d B , S C D = d A ; S C D
Lại có C D ⊥ A D , A D ⊂ S A D C D ⊥ S A , S A ⊂ S A D A D ∩ S A = A ⇒ C D ⊥ S A D .
Trong mặt phẳng (SAD) : Kẻ A H ⊥ S D , H ∈ S D thì C D ⊥ A H .
Suy ra A H ⊥ A C D ⇒ A H = d A ; S C D = d B ; S C D .
Δ S A D vuông tại A nên
1 A H 2 = 1 S A 2 + 1 A D 2 = 1 2 a 2 + 1 a 2 = 5 4 a 2 ⇒ A H = 2 a 5
Vậy khoảng cách từ điểm B đến mặt phẳng (SCD) là d = 2 a 5 5 .
Cách 2: Tư duy tự luận (Tinh khoảng cách qua công thức thể tích)
Thể tích khối chóp S.ABCD là V S . A B C D = 1 3 S A . S A B C D = 1 3 .2 a . a 2 = 2 a 3 3 (đvtt)
Do S Δ B C D = 1 2 S A B C D ⇒ V S . B C D = 1 2 V S . A B C D = a 3 3 (đvtt).
Ta có C D ⊥ S A D (xem lại phần chứng minh ở cách 1) ⇒ C D ⊥ S D ⇒ Δ S C D vuông tại D. Suy ra
S Δ S C D = 1 2 S D . C D = 1 2 S A 2 + A D 2 . C D = 1 2 . a . 2 a 2 + a 2 = a 2 5 2
(đvdt)
Mặt khác
V S . B C D = V B . S C D = 1 3 d B ; S C D . S Δ S C D ⇒ d B ; S C D = 3 V S . B C D S Δ S C D = 2 a 5
Vậy khoảng cách từ điểm B đến mặt phẳng (SCD) là d = 2 a 5 5 .