K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Đáp án D

Cách 1: Tư duy tự luận (Tính khoảng cách dựa vào hình chiếu)

Ta có 

A B // C D A B ⊄ S C D C D ⊂ S C D ⇒ A B // S C D ⇒ d B , S C D = d A ; S C D

Lại có C D ⊥ A D , A D ⊂ S A D C D ⊥ S A , S A ⊂ S A D A D ∩ S A = A ⇒ C D ⊥ S A D .

Trong mặt phẳng (SAD)  : Kẻ  A H ⊥ S D , H ∈ S D    thì C D ⊥ A H .

Suy ra A H ⊥ A C D ⇒ A H = d A ; S C D = d B ; S C D .

  Δ S A D vuông tại A nên 

1 A H 2 = 1 S A 2 + 1 A D 2 = 1 2 a 2 + 1 a 2 = 5 4 a 2 ⇒ A H = 2 a 5

Vậy khoảng cách từ điểm B đến mặt phẳng (SCD) là  d = 2 a 5 5   .

Cách 2: Tư duy tự luận (Tinh khoảng cách qua công thức thể tích)

Thể tích khối chóp S.ABCD là V S . A B C D = 1 3 S A . S A B C D = 1 3 .2 a . a 2 = 2 a 3 3  (đvtt)

 

Do S Δ B C D = 1 2 S A B C D ⇒ V S . B C D = 1 2 V S . A B C D = a 3 3  (đvtt).

Ta có C D ⊥ S A D  (xem lại phần chứng minh ở cách 1)   ⇒ C D ⊥ S D ⇒ Δ S C D vuông tại D. Suy ra

S Δ S C D = 1 2 S D . C D = 1 2 S A 2 + A D 2 . C D = 1 2 . a . 2 a 2 + a 2 = a 2 5 2

 (đvdt)

Mặt khác 

V S . B C D = V B . S C D = 1 3 d B ; S C D . S Δ S C D ⇒ d B ; S C D = 3 V S . B C D S Δ S C D = 2 a 5

Vậy khoảng cách từ điểm B đến mặt phẳng (SCD) là  d = 2 a 5 5   .

27 tháng 4 2017

Đáp án D

30 tháng 8 2018

Đáp án D

Gọi H, I , theo thứ tự là trung điểm AD,BC

G là tâm đường tròn nội tiếp tam giác đều

SAD nên G cũng là trọng tâm tam giác SAD.

13 tháng 6 2018

Chọn B

26 tháng 9 2018

Đáp án C.

Ta có SAD là tam giác đều nên S H ⊥ A D  

Mặt khác S A D ⊥ A B C D ⇒ S H ⊥ A B C D .  

Dựng  B E ⊥ H C ,

do B E ⊥ S H ⇒ B E ⊥ S H C  

Do đó d = B E = 2 a 6 ; S H = a 3 ; A D = 2 a  

Do S C = a 15 ⇒ H C = S C 2 − S H 2 = 2 a 3 .  

Do S A H B + S C H D = 1 2 a A B + C D = S A B C D 2  

suy ra  V S . A B C D = 2 V S . H B C = 2 3 . S H . S B C H

= 3 2 a 3 . B E . C H 2 = 4 a 3 6 .

19 tháng 5 2019

7 tháng 12 2017

Đáp án C

Theo dữ kiện đề bài cho, dễ dàng chứng minh được ΔACD vuông tại cân C và A C = A D 2 = a 2 .

C D ⊥ A C C D ⊥ S A ⇒ C D ⊥ S A C ⇒ S A C ⊥ S C D

Mà S A C ∩ S C D = S C , từ A kẻ A H ⊥ S C . Khi đó d A ; S C D = A H .

Tam giác SAC vuông tại

 A: 1 A H 2 = 1 S A 2 + 1 A C 2 = 1 a 2 + 1 2 a 2 = 3 2 a 2 ⇒ d A ; S C D = A H = a 2 3

Mặt khác: A D ∩ S C D = D  và M là trung điểm AD nên:

d M ; S C D d A ; S C D = M D A D = 1 2 ⇒ d M ; S C D = 1 2 d A ; S C D = a 6 6

10 tháng 7 2017

12 tháng 10 2018