Cho n là số nguyên dương, tìm n sao cho:
1 2 log a 2019 + 2 2 log a 2019 + ... + n 2 log a n 2019 = 1010 2 × 2019 2 log a 2019
A. 2019
B. 2018
C. 2017
D. 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Dễ thấy un là cấp số nhân với q = 10
Ta có: u8 = 107u1; u10 = 109u1
Do đó PT
Giải PT ta được logu1 = -17 ⇔ u1 = 10-17 ⇒ u2018 = 102017 u1 = 102000
\(log_xy=log_yx=\frac{1}{log_xy}\Rightarrow\left(log_xy\right)^2=1\Rightarrow\left[{}\begin{matrix}log_xy=1\\log_xy=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x=\frac{1}{y}\end{matrix}\right.\)
Do \(log_x\left(x-y\right)\) tồn tại \(\Rightarrow x-y\ne0\Rightarrow x\ne y\Rightarrow x=\frac{1}{y}\)
\(log_x\left(x-y\right)=log_y\left(x+1\right)\Leftrightarrow log_x\left(x-\frac{1}{x}\right)=-log_x\left(x+1\right)\)
\(\Leftrightarrow log_x\left[\left(x-\frac{1}{x}\right)\left(x+1\right)\right]=0\Leftrightarrow\left(x-\frac{1}{x}\right)\left(x+1\right)=1\)
\(\Leftrightarrow\left(x^2-1\right)\left(x+1\right)=x\Leftrightarrow x^3+x^2-2x-1=0\)
Pt này nghiệm xấu, đề bài có vấn đề
ĐKXĐ: \(x\ne y\)
\(log_xy=\frac{1}{log_xy}\Leftrightarrow log_x^2y=1\Leftrightarrow\left[{}\begin{matrix}log_xy=1\\log_xy=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y\left(l\right)\\x=\frac{1}{y}\end{matrix}\right.\)
\(log_x\left(x-\frac{1}{x}\right)=log_{x^{-1}}\left(x+\frac{1}{x}\right)\Leftrightarrow log_x\left(x-\frac{1}{x}\right)=-log_x\left(x+\frac{1}{x}\right)\)
\(\Leftrightarrow log_x\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)=0\Leftrightarrow\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)=1\)
\(\Leftrightarrow x^2-\frac{1}{x^2}=1\Leftrightarrow x^4-x^2-1=0\Rightarrow x^2=\frac{1+\sqrt{5}}{2}\Rightarrow y^2=\frac{1}{x^2}=\frac{-1+\sqrt{5}}{2}\)
\(\Rightarrow x^2+xy+y^2=\frac{1+\sqrt{5}}{2}+1+\frac{-1+\sqrt{5}}{2}=\sqrt{5}+1\)
Đáp án A
Phương pháp:
Biến đổi VT để xuất hiện log a 2019
Sử dụng công thức 1 3 + 2 3 + 3 3 + ... + n 3 = n 2 n + 1 2 4
Cách giải:
Ta có:
V T = 1 2 . log a 2019 + 2 2 log a 2019 + ... n 2 . log a n 2019
Vậy. = 1 3 . log a 2019 + 2 3 log a 2019 + ... + n 3 . log a 2019
= 1 3 + 2 3 + ... + n 3 . log a 2019
V T = 1010 2 .2019 2 . log a 2019
Có V T = V P
⇔ 1 3 + 2 3 + ... + n 3 log a 2019 = 1010 2 .2019 2 . log a 2019
⇔ n 2 n + 1 2 4 = 1010 2 .2019 2
⇔ n 2 + n 2 = 2020.2019 2
⇔ n 2 + n = 2020.2019 vì n 2 + n > 0 , ∀ n > 0
⇔ n = 2019 ∈ 0 ; + ∞ n = − 2020 ∉ 0 ; + ∞
Vậy n = 2019
Chú ý khi giải:
HS thường không biết áp dụng công thức 1 3 + 2 3 + 3 3 + ... + n 3 = n 2 n + 1 2 4 dẫn đến không tìm ra kết quả bài toán.