K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

 

Đáp án A

Do các góc phẳng đỉnh A đều bằng 60 ∘ và 

nên các tam giác A ’ A D ;   A ’ A B ;   A B D là các tam giác đều cạnh 1.

Ta có: 

A ' C ' / / A C ⇒ d A B ' ; A ' C ' = d A B ' C ; A ' C ' = d C ' ; A B ' C = 3 V C ' . A B ' C S . A B ' C

Mặt khác A ’ . A B D là hình tứ diện đều cạnh 1.

Ta có  A H = 2 3 . A O = 3 3 ⇒ A ' H = A   A ' 2 − A H 2 = 6 3 .

V = S A B C D = V A . C C ' B ' = 1 2 V A . C C ' B ' B = V 6 = 2 12

Δ A B ' C ' cân tại A có  A B ' = A C = 3 ; B ' C = A ' D = 1

S A B ' C = 11 4 ⇒ d = 3. 2 12 11 4 = 22 11 .

 

16 tháng 11 2018

Đáp án A.

11 tháng 10 2018

16 tháng 11 2018

Đáp án A.

Ta có AA'BC là chóp đều có tất cả các cạnh bằng 1

Ta có 

Lại có  ∆ AB'C có B'C = A'D = 1; (do  là hình thoi cạnh 1 có   B A D ^   =   60 0 )

Do đó 

12 tháng 12 2019

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

4 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi I là trung điểm của cạnh B'C'. Theo giả thiết ta có AI ⊥ (A'B'C') và ∠ A A ′ I   =   60 ο . Ta biết rằng hai mặt phẳng (ABC) và (A'B'C') song song với nhau nên khoảng cách giữa hai mặt phẳng chính là khoảng cách AI.

Do đó 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ B′C′ ⊥ AA′

Mà AA′ // BB′ // CC′ nên B’C’ ⊥ BB’

 

Vậy mặt bên BCC’B’ là một hình vuông vì nó là hình thoi có một góc vuông.

1 tháng 1 2018

+ Gọi O là giao điểm của AC và BD ⇒  O là trung điểm của AC và BD

Ta có: A’B = A’D (đường chéo các hình thoi) ⇒ Tam giác A’BD cân tại A’ có O là trung điểm của BD ⇒  A’O ⊥  BD.

+ Hạ A’H  ⊥  AC, H ∈  AC

Ta có B D ⊥ A C B D ⊥ A ' O ⇒ B D ⊥ A O A ' ⇒  A’H ⊥  BD

Do đó:  A’H ⊥ (ABCD)

Vì (ABCD) // (A’B’C’D’) nên A’H chính là khoảng cách giữa hai mặt đáy.

+ Tính A’H

Ta có: AC = A D 2 + C D 2 − 2. A D . C D . cos 120 ° = a 3 ⇒  AO =  a 3 2

Theo giả thiết ⇒  hình chóp A’.ABD là hình chóp đều, nên ta có:

AH = 2/3 AO =  a 3 3

A’H =  A ' A 2 − A H 2 = a 2 − a 2 3 = a 6 3

Vậy khoảng cách giữa hai đáy (ABCD) và (A’B’C’D’) là a 6 3 .

Đáp án B

NV
28 tháng 1 2021

Do tất cả các cạnh bằng a nên các mặt bên đều là hình thoi.

Mà \(\widehat{BAA'}=\widehat{BAD}=\widehat{DAA'}=60^0\Rightarrow A'B=A'D=AA'=BD=a\)

\(\Rightarrow\) Hình chiếu vuông góc H của A' lên (ABCD) là tâm tam giác đều ABD 

\(AH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\) ; \(AC=a\sqrt{3}\)

\(cos\widehat{A'AC}=\dfrac{AH}{AA'}=\dfrac{\sqrt{3}}{3}\Rightarrow cos\widehat{ACC'}=-\dfrac{\sqrt{3}}{3}\)

Áp dụng định lý hàm cos cho tam giác ACC':

\(AC'=\sqrt{AC^2+C'C^2-2AC.C'C.cos\widehat{ACC'}}=a\sqrt{6}\)