Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân đỉnh A, A B C ^ = α , BC' tạo với (ABC) góc β . Gọi I là trung điểm AA', biết B I C ^ = 90 0 . Tính tan 2 α + tan 2 β
A . 1 2
B . 2
C . 3
D . 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có
Gọi H là trung điểm của BC.
∆ AHB vuông tại H
Mà ∆ BIC vuông tại I
Thay vào (*) ta có: tan 2 α + tan 2 β = 1
Đáp án A
Gắn hệ trục tọa độ Oxyz như hình vẽ
Vecto pháp tuyến của mặt phẳng
Vecto pháp tuyến của mặt phẳng (AB’I) là
Đáp án D
Ta có: S A B C = A B 2 2 = a 2 2 ⇒ A A ' = V S = a 3
Do A A ' ⊥ A B C ⇒ A ' B A ^ = α
⇒ tan α = A A ' A B = 3 ⇒ α = 60 ∘
Phương pháp
- Tính chiều cao A 'H .
- Tính thể tích khối lăng trụ V = S A B C . A ' H
Cách giải:
Tam giác ABC vuông cân đỉnh A cạnh AB = AC = 2a nên BC
Tam giác AHA' vuông tại H nên
Vậy thể tích khối lăng trụ
Chọn B.
Chọn A
Gọi H, K lần lượt là là trung điểm cạnh A'B' và AB. Từ giả thiết ta có
Mặt khác: HC', HB' và HK đôi một vuông góc nhau.
Tọa độ hóa
Xét mặt phẳng (BC'N) có
Phương trình (BC'N) là:
Khoảng cách từ M đến (BC'N) là:
Chọn C.
Phương pháp:
Cách giải: Gọi J là giao điểm của B’I và BC. Suy ra AJ là giao tuyến của (AB’I) và (ABC).
Gọi K là hình chiếu của C lên AJ. Suy ra AJ vuông góc với KI.
trước hết phải xác định được góc thì mới tính tiếp nhé.kẻ C'H vuông góc A'B' thì ta có C'H vuông góc A'B' và C'H vuông góc BB' thì C'H vuông góc với cả mp AA'B'B và góc là BC'H=60.giờ tính khoảng cách thông qua thể tích chóp MBNC'.tính diện tích MNB và d(C;MNB) là dễ nhất.ra được thể tích thì tính tiếp diện tích BNC'.rồi lắp vào công thức thể tích là ok thôi
Đáp án D
Ta có
Gọi H là trung điểm của BC.
∆ AHB vuông tại H
Mà ∆ BIC vuông tại I
Thay vào (*) ta có: tan 2 α + tan 2 β = 1