K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

Đáp án D.

Nhận thấy ∆ ABC là hình chiếu của  ∆ AMC' lên mặt phẳng (ABC).

Gọi φ  là góc giữa (AMC') và (ABC)

Ta có 

=> C'M = 2a

 

12 tháng 11 2019

30 tháng 10 2018

Chọn A

ta chứng minh được

Ta có 

9 tháng 9 2017

Đáp án A

Tam giác ABC là hình chiếu vuông góc của ΔAB′M lên mặt phẳng (ABC).

15 tháng 5 2018

Đáp án C

6 tháng 3 2019

Đáp án B.

NV
7 tháng 5 2023

Qua A kẻ đường thẳng song song CI cắt BC kéo dài tại D

\(\Rightarrow CI||\left(A'AD\right)\Rightarrow d\left(A'A;CI\right)=d\left(CI;\left(A'AD\right)\right)=d\left(H;\left(A'AD\right)\right)\)

Từ H kẻ \(HE\perp AD\), từ H kẻ \(HF\perp A'E\)

\(\Rightarrow HF\perp\left(A'AD\right)\Rightarrow HF=d\left(H;\left(A'AD\right)\right)\)

Tứ giác AIHE là hình chữ nhật (3 góc vuông) \(\Rightarrow HE=AI=\dfrac{a}{2}\)

\(A'H\perp\left(ABC\right)\Rightarrow\widehat{A'AH}\) là góc giữa \(A'A\) là (ABC)

\(\Rightarrow\widehat{A'AH}=45^0\)

\(CI=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều) \(\Rightarrow IH=\dfrac{1}{2}CI=\dfrac{a\sqrt{3}}{4}\)

\(\Rightarrow AH=\sqrt{AI^2+IH^2}=\dfrac{a\sqrt{7}}{4}\)

\(\Rightarrow A'H=AH.tan45^0=\dfrac{a\sqrt{7}}{4}\)

Hệ thức lượng:

\(HF=\dfrac{HE.A'H}{\sqrt{HE^2+A'H^2}}=\dfrac{a\sqrt{77}}{22}\)

NV
7 tháng 5 2023

loading...

6 tháng 10 2017

Đáp án D

Ta có 

Gọi H là trung điểm của BC.

∆ AHB vuông tại H

Mà  ∆ BIC vuông tại I

Thay vào (*) ta có:   tan 2 α   +   tan 2 β = 1

18 tháng 9 2019

Đáp án D

Ta có 

Gọi H là trung điểm của BC.

∆ AHB vuông tại H

Mà  ∆ BIC vuông tại I

Thay vào (*) ta có:   tan 2 α   +   tan 2 β = 1