Cho tam giac ABC co AB=6cm, AC=8cm, BC=10cm
a) Chung minh tam giac ABC vuong
b) Ke AH vuong goc voi BC . Biet Ah=4,8cm . Tinh do dai cac doan BH,CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)
a) Do AH vuông góc với BC nên:
Góc AHB= Góc AHC=90 độ
Ta có: Góc BAH= 90 độ- góc B(1)
Góc CAH=90 độ- góc C(2)
Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)
Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH
Xét tam giác ABH và tam giác ACH, có:
Góc BAH= Góc CAH( CM trên)
Chung AH
Góc AHB=Góc AHC( Đều bằng 90 độ)
=> Tam giác ABH=Tam giác ACH( G-c-g)
Khi đó: HB=HC( Cặp cạnh tương ứng)
-------> ĐPCM
ftyscdydffffffsoiuqyfwvy579dew9fqr8yucfdncdsp[nvf3rwhrwpoiuhbvhieu noi j cho 100000000000 ****
hieu noi j cho 100000 ****
Thảo Jackson đó nghĩa là: tôi là đứa ngu si hay trả lời linh tinh. luôn ăn gian về điểm hỏi đáp. tui dốt và không giữ lời hứa
Tam giác ABC cân ở A nên \(AB=AC=AH+HC=8+3=11\left(cm\right)\)
Tam giác AHB vuông tại H ,theo định lí Pitago ta có :
\(AH^2+HB^2=AB^2\)
=> \(8^2+HB^2=11^2\)
=> \(HB^2=11^2-8^2=57\)
=> \(HB=\sqrt{57}\left(cm\right)\)
Tam giác BHC vuông tại H,theo định lí Pitago ta có :
\(BH^2+HC^2=BC^2\)
=> \(\left(\sqrt{57}\right)^2+3^2=BC^2\)
=> \(57+3^2=BC^2\)
=> \(BC^2=57+9=66\)
=> \(BC=\sqrt{66}\approx7,94\left(cm\right)\)
Giải:
Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:
AH2+BH2=AB2AH2+BH2=AB2
AH2=AB2−BH2AH2=AB2−BH2
AH2=52−32AH2=52−32
⇒AH2=16⇒AH2=16
⇒AH=4(cm)⇒AH=4(cm)
Ta có:
BH+HC=BCBH+HC=BC
⇒HC=BC−BH⇒HC=BC−BH
⇒HC=8−3⇒HC=8−3
⇒HC=5(cm)⇒HC=5(cm)
Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:
AH2+HC2=AC2AH2+HC2=AC2
42+52=AC242+52=AC2
⇒AC2=41⇒AC2=41
⇒AC=41−−√(cm)
CHÚC HỌC GIỎI
Hình tự vẽ nha bạn :)
Áp dụng định lí Pytago trong tam giác vuông ABH , ta có :
AH2 + BH2 = AB2
=> AH2 = AB2 - BH2 = 52 - 32
=> AH2 = 25 - 9 = 16
=> AH = \(\pm4\)
Mà AH > 0 => AH = 4 cm
Lại có :
BH + HC = BC
=> HC = BC - BH = 8 - 3
=> HC = 5cm
Áp dụng định lí Pytago trong tam giác vuông AHC, ta có :
AC2 = AH2 + HC2
=> AC2 = 42 + 52 = 16 + 25
=> AC2 = 41
=> AC = \(\pm\sqrt{41}\)
Mà AC > 0 => AC = \(\sqrt{41}\) cm
Vậy AH = 4 cm ; HC = 5 cm ; AC = \(\sqrt{41}\)cm
a) Xét 2 tam giác vuông AHB và tam giác AHC có:
AB = AC (gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)
=>HB = HC (2 cạnh tương ứng)
=> góc A1= góc A2 (2 góc tương ứng)
b) Ta có : BC = HB + HC
mà HB = HC (cmt)
BC = 8 (cm)
=> HB = HC = BC/2 = 8/2= 4 (cm)
Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:
AB^2 = AH^2 + HB^2
hay 5^2 = AH^2 + 4^2
=> AH = 5^2 - 4^2 =25 - 16= 9
=> AH = căn bậc 2 của 9 = 3 (cm)
c)Xét 2 tam giác vuông BHD và tam giác CHE có:
HB = HC (cmt)
Góc B = góc C ( vì tam giác ABC cân tại A)
=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)
=> BD= CE (2 cạnh tương ứng)
Xét 2 tam giác ADI và tam giác AEI có:
góc A1 = góc A2 (cmt)
AI là cạnh chung
AD =AE ( vì AB = AC; BD = CE)
=> tam giác ADI = tam giác AEI (c-g-c)
=> góc I1 = góc I2 (2 góc tương ứng)
mà góc I1 + góc I2 = 180 độ
=> góc I1 = góc I2 = 180/ 2= 90 (độ)
=> AI vuông góc với DE
=> AH cũng vuông góc với DE
mặt khác: AH lại vuông góc với BC
=> DE // BC (đpcm)