K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2016

Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)

a) Do AH vuông góc với BC nên:

Góc AHB= Góc AHC=90 độ

Ta có: Góc BAH= 90 độ- góc B(1)

Góc CAH=90 độ- góc C(2)

Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)

Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH

Xét tam giác ABH và tam giác ACH, có:

Góc BAH= Góc CAH( CM trên)

Chung AH

Góc AHB=Góc AHC( Đều bằng 90 độ)

=> Tam giác ABH=Tam giác ACH( G-c-g)

Khi đó: HB=HC( Cặp cạnh tương ứng)

-------> ĐPCM

29 tháng 12 2016

ĐPCM la gi vay

ve hinh gium mk luon nha

10 tháng 4 2017

A B C H D E I 1 2 1 2 5 5 8

a) Xét 2 tam giác vuông AHB và tam giác AHC có:

AB = AC (gt)

AH là cạnh chung

=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)

=>HB = HC (2 cạnh tương ứng)

=> góc A1= góc A2 (2 góc tương ứng)

b) Ta có : BC = HB + HC

mà HB = HC (cmt)

BC = 8 (cm)

=> HB = HC = BC/2 = 8/2= 4 (cm)

Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:

AB^2 = AH^2 + HB^2

hay 5^2 = AH^2 + 4^2

=> AH = 5^2 - 4^2 =25 - 16= 9

=> AH = căn bậc 2 của 9 = 3 (cm)

c)Xét 2 tam giác vuông BHD và tam giác CHE có:

HB = HC (cmt)

Góc B = góc C ( vì tam giác ABC cân tại A)

=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)

=> BD= CE (2 cạnh tương ứng)

Xét 2 tam giác ADI và tam giác AEI có:

góc A1 = góc A2 (cmt)

AI là cạnh chung

AD =AE ( vì AB = AC; BD = CE)

=> tam giác ADI = tam giác AEI (c-g-c)

=> góc I1 = góc I2 (2 góc tương ứng)

mà góc I1 + góc I2 = 180 độ

=> góc I1 = góc I2 = 180/ 2= 90 (độ)

=> AI vuông góc với DE

=> AH cũng vuông góc với DE

mặt khác: AH lại vuông góc với BC

=> DE // BC (đpcm)

22 tháng 1 2021

Bài dễ thế lày màgianroi

27 tháng 2 2017

TRÔNG MÌNH VẬY THÔI NHƯNG LÀ FAN RUỘT CỦA SẾP TÙNG ĐẤY ! 

SKY ZÔ KẾT BẠN NHA !!!!!!!!!!! 

VÌ SẾP TÙNG MUÔN NĂM !!!!!!! 

28 tháng 2 2017

Chỗ câu hỏi của người ta cmt gì liên quan quá vậy @SN ?

A B C H D E

a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:

\(AH\): chung

\(\widehat{AHB}=\widehat{AHC}=90\)độ (gt)

\(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)

b) Chứng minh câu a \(\Rightarrow HB=HC\)(hai cạnh tương ứng)

                                 \(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

c) Xét \(\Delta ADH\)và \(\Delta AEH\)có:

\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

\(AH\): chung

\(\widehat{ADH}=\widehat{AEH}=90\)độ (gt)

\(\Rightarrow\Delta ADH=\Delta AEH\left(g.c.g\right)\)

\(\Rightarrow DA=EA\)(hai cạnh tương ứng)

\(\Rightarrow\Delta ADE\)cân tại \(A\)

31 tháng 3 2017

Bạn tự vẽ hình nhé

Xét các tam giác vuông AKM và tam giác vuông CHN có

AM=NC ( bằng 1 nửa đoạn AB=AC)

Góc MAK= góc NCH ( cùng phụ với AMC)

=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)

=> AK=HC ( 2 cạnh tương ứng)

Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)

Có N là trung điểm của cạnh AC (2)

Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\) 

=>H là trung điểm của KC

b) Theo câu a, ta có AK=HC và KH=HC

=>AK=HC

=> AK2+KH2=AH2

=>2.AK2=16

=>AK2=8

=>AK=KH=\(\sqrt{8}\)

=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)

Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2

=>AC2=8+32=40

=>\(AC=AB=\sqrt{40}\)

Diện tích tam giác ABC là

\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2

Câu c hình như sai đề

1 tháng 4 2017

Theo cau a ta co:

goc BAK = gocACH va AK = CH

Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )

Suy ra goc DKA = goc AHC

Ma tam giac AKH vuong tai A

Suy ra goc AHK = 45 do 

Suy ra goc AHC = 135 do ( ke bu )

Hay goc AKB = 135 do

Ta co goc AKH = 90 do Suy ra goc BKH = 135 do

Hay AKB = 135 do

Ta lai co goc AKH = 90 do Suy ra BKH = 35 do 

Suy ra tam giac BKA = tam gic BKM

goc BHK = goc BAK

Do HE ||  AC ( cung vuong goc AB )

Suy ra goc EHM = goc ACH Va goc BAK = goc ACH

Suy ra BHK = MHE

HM la tia phan giac goc EHB

12 tháng 3 2016

a)

ta có: tam giác ABC cân tại A suy ra AB=AC; B=C

xét tam giác ABH và tam giác ACH có:

AB=AC(gt)

AH(chung)

BAH=CAH(gt)

suy ra tam giác ABH= tam giac ACH(c.g.c)

suy ra BH=CH(đfcm)

b)

xét 2 tam giác vuông ADH và AEH có

AH(chung)

DAH=EAH(gt)

suy ra tam giác DAH=EAH(CH-GN)

suy ra HD=HE suy ra tam giác HDE cân tại H(đfcm)

12 tháng 3 2016

A B C H D E

30 tháng 1 2019

tu ve hinh : 

a, AC = AB => tamgiac ABC can tai A (dn)

=> goc ABC  = goc ACB (tc) 

xet tam giac ABH va tamgiac ACH co : goc AHC = goc AHB do AH | BC (gt)

=>  tam giac ABH = tamgiac ACH (ch - gn)            (1)

b, tamgiac AHB vuong tai H do AH | BC (gt)

=> AB2 = AH2 + BH2 

 (1) =>  BH  = HC ma BC = 6 (gt)=> BH = 3

BA = 5 (gt)

=> AH = 52 - 32

=> AH = 16

=> AH = 4 do AH  > 0

c, xet tamgiac BMH va tamgiac NCH co : goc BMH = goc NCH = 90o do MH | AB va HN | AC (gt)

goc ABC = goc ACB (cmt) va BH = HC (cmt)

=>  tamgiac BMH = tamgiac NCH (ch - gn) 

=> MH = HN (dn)

=> tamgiac MNH can tai H (dn)

d, cm theo truong hop ch - gn di, moi tay qa

1 tháng 2 2019

                       Giải

( Bạn tự vẽ hình nhé )

a, \(AB=AC\)  \(\Rightarrow\)\(\Delta ABC\)  cân tại A 

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) 

Xét \(\Delta ABH\) và \(\Delta ACH\) có : \(\widehat{AHC}=\widehat{AHB}\)  do \(AH\perp BC\)

\(\Delta ABH=\Delta ACH\)              (1) [ đpcm]

b, \(\Delta AHB\) vuông tại H do \(AH\perp BC\)

 \(\Rightarrow AB^2=AH^2+BH^2\)

Từ  (1) suy ra  BH  = HC mà BC = 6 nên BH = 3

\(\Rightarrow\)BA = 5 

\(\Rightarrow AH^2=5^2-3^2\)

\(\Rightarrow AH^2=25-9\)

\(\Rightarrow AH^2=16\)

\(\Rightarrow AH=\sqrt{16}\)

\(\Rightarrow AH=4cm\)

\(\Rightarrow\) AH = 4cm do AH  > 0

c, Xét \(\Delta BMH\) và \(\Delta NCH\) có :\(\widehat{BMH}=\widehat{NCH}=90^0\) do \(MH\perp AB\) va \(HN\perp AC\)

 \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)và \(BH=HC\)

\(\Rightarrow\Delta BHM=\Delta NCH\)  

\(\Rightarrow MH=HN\)

\(\Rightarrow\Delta MNH\) cân tại H \(\left(đpcm\right)\)

d, ...