Cho tam giac ABC co AB =6cm , AC=8cm, BC =10cm .
a) Chung minh tam giac ABC vuong .
b) Ke AH vuong goc voi BC . Biet AH=4,8cm . Tinh do dai cac doan BH,CH .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)
a) Do AH vuông góc với BC nên:
Góc AHB= Góc AHC=90 độ
Ta có: Góc BAH= 90 độ- góc B(1)
Góc CAH=90 độ- góc C(2)
Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)
Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH
Xét tam giác ABH và tam giác ACH, có:
Góc BAH= Góc CAH( CM trên)
Chung AH
Góc AHB=Góc AHC( Đều bằng 90 độ)
=> Tam giác ABH=Tam giác ACH( G-c-g)
Khi đó: HB=HC( Cặp cạnh tương ứng)
-------> ĐPCM
ftyscdydffffffsoiuqyfwvy579dew9fqr8yucfdncdsp[nvf3rwhrwpoiuhbvhieu noi j cho 100000000000 ****
hieu noi j cho 100000 ****
Thảo Jackson đó nghĩa là: tôi là đứa ngu si hay trả lời linh tinh. luôn ăn gian về điểm hỏi đáp. tui dốt và không giữ lời hứa
a) Xét 2 tam giác vuông AHB và tam giác AHC có:
AB = AC (gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)
=>HB = HC (2 cạnh tương ứng)
=> góc A1= góc A2 (2 góc tương ứng)
b) Ta có : BC = HB + HC
mà HB = HC (cmt)
BC = 8 (cm)
=> HB = HC = BC/2 = 8/2= 4 (cm)
Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:
AB^2 = AH^2 + HB^2
hay 5^2 = AH^2 + 4^2
=> AH = 5^2 - 4^2 =25 - 16= 9
=> AH = căn bậc 2 của 9 = 3 (cm)
c)Xét 2 tam giác vuông BHD và tam giác CHE có:
HB = HC (cmt)
Góc B = góc C ( vì tam giác ABC cân tại A)
=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)
=> BD= CE (2 cạnh tương ứng)
Xét 2 tam giác ADI và tam giác AEI có:
góc A1 = góc A2 (cmt)
AI là cạnh chung
AD =AE ( vì AB = AC; BD = CE)
=> tam giác ADI = tam giác AEI (c-g-c)
=> góc I1 = góc I2 (2 góc tương ứng)
mà góc I1 + góc I2 = 180 độ
=> góc I1 = góc I2 = 180/ 2= 90 (độ)
=> AI vuông góc với DE
=> AH cũng vuông góc với DE
mặt khác: AH lại vuông góc với BC
=> DE // BC (đpcm)
Tam giác ABC cân ở A nên \(AB=AC=AH+HC=8+3=11\left(cm\right)\)
Tam giác AHB vuông tại H ,theo định lí Pitago ta có :
\(AH^2+HB^2=AB^2\)
=> \(8^2+HB^2=11^2\)
=> \(HB^2=11^2-8^2=57\)
=> \(HB=\sqrt{57}\left(cm\right)\)
Tam giác BHC vuông tại H,theo định lí Pitago ta có :
\(BH^2+HC^2=BC^2\)
=> \(\left(\sqrt{57}\right)^2+3^2=BC^2\)
=> \(57+3^2=BC^2\)
=> \(BC^2=57+9=66\)
=> \(BC=\sqrt{66}\approx7,94\left(cm\right)\)