Cho hình lập phương ABCD.A’B’C’D’, gọi φ là góc giữa hai mặt phẳng (A’BD) và (ABC). Tính tan φ
A. tan φ = 1 2
B. tan φ = 2
C. tan φ = 2 3
D. tan φ = 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
* Hướng dẫn giải:
Dễ thấy AB = BC và A B C ⏜ = 60 o nên tam giác ABC đều.
Gọi H là hình chiếu của A lên (ABCD).
Do SA = SB =SC nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Mặt khác, H O = 1 3 B O = 1 3 . a 3 2 = a 3 6
Đáp án C
Giao tuyến giữa (SAB) và (CSD) là đường thằng d qua S và song song AB, CD. Gọi I, J theo thứ tự là trung điểm AB, CD
Suy ra SI, SJ cùng vuông góc với d tại S.
Áp dụng định lý cosin trong tam giác ISJ:
Chọn D
Gọi N, K là trung điểm của BB', A'B'
Ta tính được
Áp dụng định lí hàm cosin ta suy ra
Cách 2. Chọn hệ trục tọa độ Oxyz với
Chọn D.
Gọi M là trung điểm của BC, suy ra AM ⊥ BC.
Ta có
Do đó
Tam giác ABC đều cạnh a, suy ra trung tuyến AM = a 3 2
Tam giác vuông SAM, có
Đáp án A
Ta có: B là hình chiếu của B lên (ABCD)
A là hình chiếu của S lên (ABCD)
Suy ra góc tạo bởi (ABCD) là góc φ = S B A ^ .
Chọn B