K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

Đáp án C

Giao tuyến giữa (SAB) và (CSD) là đường thằng d qua S và song song AB, CD. Gọi I, J theo thứ tự là trung điểm AB, CD

Suy ra SI, SJ cùng vuông góc với d tại S.

Áp dụng định lý cosin trong tam giác ISJ:

16 tháng 1 2017

Gọi giao điểm của BO và AC là J;  giao điểm của CO và AB là I.

Kẻ AK vuông góc CC’.

Vì đường thẳng CC’ vuông góc mp(ABK ) nên BK vuông góc CC’.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án C

NV
20 tháng 4 2023

Gọi D là trung điểm AB \(\Rightarrow A'D\perp\left(ABC\right)\) 

\(\Rightarrow CD\) là hình chiếu vuông góc của A'C lên (ABC)

\(\Rightarrow\widehat{A'CD}\) là góc giữa A'C và (ABC) \(\Rightarrow\widehat{A'CD}=60^0\)

\(CD=\dfrac{AB\sqrt{3}}{2}=a\sqrt{3}\) (trung tuyến tam giác đều)

\(\Rightarrow A'D=CD.tan60^0=3a\)

Từ D kẻ \(DE\perp AC\) (E thuộc AC)

Mà \(A'D\perp\left(ABC\right)\Rightarrow A'D\perp AC\)

\(\Rightarrow AC\perp\left(A'DE\right)\Rightarrow\widehat{AED}\) là góc giữa (A'AC) và (ABC)

\(DE=AD.sinA=a.sin60^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow A'E=\sqrt{A'D^2+DE^2}=\dfrac{a\sqrt{39}}{2}\)

\(\Rightarrow cos\widehat{A'ED}=\dfrac{DE}{A'E}=\dfrac{\sqrt{13}}{13}\)

NV
20 tháng 4 2023

loading...

30 tháng 3 2017

21 tháng 9 2018

Chọn D.

Gọi M là trung điểm của BC, suy ra AM ⊥ BC.

Ta có 

Do đó 

Tam giác ABC đều cạnh a, suy ra trung tuyến AM = a 3 2

Tam giác vuông SAM, có 

30 tháng 8 2017

Đáp án A

Ta có: B là hình chiếu của B lên  (ABCD)

A là hình chiếu của S lên (ABCD)

Suy ra góc tạo bởi (ABCD)  là góc  φ = S B A ^

 

NV
7 tháng 5 2023

Qua A kẻ đường thẳng song song CI cắt BC kéo dài tại D

\(\Rightarrow CI||\left(A'AD\right)\Rightarrow d\left(A'A;CI\right)=d\left(CI;\left(A'AD\right)\right)=d\left(H;\left(A'AD\right)\right)\)

Từ H kẻ \(HE\perp AD\), từ H kẻ \(HF\perp A'E\)

\(\Rightarrow HF\perp\left(A'AD\right)\Rightarrow HF=d\left(H;\left(A'AD\right)\right)\)

Tứ giác AIHE là hình chữ nhật (3 góc vuông) \(\Rightarrow HE=AI=\dfrac{a}{2}\)

\(A'H\perp\left(ABC\right)\Rightarrow\widehat{A'AH}\) là góc giữa \(A'A\) là (ABC)

\(\Rightarrow\widehat{A'AH}=45^0\)

\(CI=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều) \(\Rightarrow IH=\dfrac{1}{2}CI=\dfrac{a\sqrt{3}}{4}\)

\(\Rightarrow AH=\sqrt{AI^2+IH^2}=\dfrac{a\sqrt{7}}{4}\)

\(\Rightarrow A'H=AH.tan45^0=\dfrac{a\sqrt{7}}{4}\)

Hệ thức lượng:

\(HF=\dfrac{HE.A'H}{\sqrt{HE^2+A'H^2}}=\dfrac{a\sqrt{77}}{22}\)

NV
7 tháng 5 2023

loading...