K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Do H là chân đường vuông góc hạ từ O tới mặt phẳng (ABC) nên:

OH ⊥ (ABC) ⇒ OH ⊥ BC (2)

Mà OA; OH ⊂ (OAH); OA ∩ OH = O (3)

Từ (1); (2) và (3) ⇒ BC ⊥ (OAH)

⇒ BC ⊥ AH

Chứng minh tương tự ta có: AC ⊥ BH

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

⇒ H là trực tâm ΔABC.

b) Gọi M = AH ∩ BC.

+ BC ⊥ (OAH) ⇒ BC ⊥ OM.

ΔOBC vuông tại O có đường cao OM

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

+ OA ⊥ (OBC) ⇒ OA ⊥ OM ⇒ ΔOAM vuông tại O.

OH ⊥ (ABC) ⇒ OH ⊥ AM.

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

23 tháng 2 2018

Chọn D

Từ giả thiết suy ra: ΔABC cân tại A có:

Gọi I là trung điểm của BC  ⇒ A I ⊥ B C

Giả sử H là trực tâm của tam giác ABC.

Ta thấy  O A ⊥ O B C

Vì  O B ⊥ O A C ⇒ O B ⊥ A C và  A C ⊥ B H nên  A C ⊥ O B H ⇒ O H ⊥ A C   ( 1 )

B C ⊥ O A I ⇒ O H ⊥ B C   ( 2 )

Từ (1) và (2) suy ra  O H ⊥ A B C

Có  O I = 1 2 B C = a 2 2 = O A

=> ΔAOI vuông cân tại O => H là trung điểm AI và  O H = 1 2 A I = a 2

Khi đó:

27 tháng 3 2018

1 tháng 11 2018

Đáp án D

Gọi M là trung điểm của  B C ⇒ B M ⊥ O A M

Vì  O H ⊥ A B C ⇒ 1 O H 2 = 1 O A 2 + 1 O B 2 + 1 O C 2 ⇒ O H = a 2

Tam giác OAH vuông tại H, có  A H = O A 2 − O H 2 = a 2

Diện tích tam giác vuông OAH là  S Δ O A H = 1 2 . O H . A H = a 2 8

Thể tích khối chóp OABH  

V O A B H = 1 3 . B M . S Δ O A H = 1 3 . a 2 2 . a 2 8 = a 3 2 48

21 tháng 9 2017

3 tháng 10 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (BC ⊥ OA & BC ⊥ OI ⇒ BC ⊥ (OAI)

⇒ (ABC) ⊥ (OAI).

b) + Xác định góc α giữa AB và mặt phẳng (AOI)

(A ∈ (OAI) & BI ⊥ (OAI) ⇒ ∠[(AB,(OAI))] = ∠(BAI) = α.

+ Tính α:

Trong tam giác vuông BAI, ta có: sinα = 1/2 ⇒ α = 30o.

c) Xác định góc β giữa hai đường thẳng AI và OB:

Gọi J là trung điểm OC,

ta có: IJ // OB và IJ ⊥ (AOC). Như vậy:

∠[(AB,OB)] = ∠[(AI,IJ)] = ∠(AIJ) = β.

+ Tính góc:

Trong tam giác IJA,

ta có: tan β = AJ/IJ = √5 ⇒ β = arctan√5.

18 tháng 8 2018