Cho nửa đường tròn đường kính AB và dây MN có độ dài bằng bán kính (M thuộc cung AN, M khác A, N khác B). Các tia AM và BN cắt nhau tại I, các dây AN và BM cắt nhau tại K.
a. Chứng minh rằng: IK vuông góc với AB
b. Chứng minh rằng:AK.AN+BK.BM=AB2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ ra sđ MN=60o nên tính được AIB=60o , do đó điểm I thuộc cung chứa góc 60o dựng trên đoạn AB.
Diện tích tam giác IAB lớn nhất khi IE lớn nhất (IE là đường cao của tam giác IAB), khi đó I nằm chính giữa cung chứa góc 60o dựng trên đoạn AB tương ứng với MN song song với AB.
ta có góc CBM là góc nội tiếp chắn cung CM
góc MBA là góc nội tiếp chắn cung MA
mà cung CM= cung MA( vì M là điểm chính giữa của cung CA)
=> góc CBM= góc MBA
hay BM là tia phân giác của góc CBA
CM tương tự ta có: AN là tia phân giác của góc CAB
xét tam giác CAB có
2 tia phân giác BM và AN cắt nhau tại I
=> I là tâm đường tròn nội tiếp tam giác CAB
=> CI là tia phân giác của góc ACB(đpcm)
a. Ta thấy AN^ BI ,BM ^AI , nên K là trực tâm tam giác IAB. Do đó IK^ AB
b. Vì DAEK∽ DANB ∽ nên AK. AN =AE .AB
Tương tự vì DBEK∽ DBMA ∽ nên BK .BM =BE. BA
Vậy AK.AN+BK.BM=AE.AB+BE.BA=AB2