Cho đường tròn (o) ngoại tiếp tam giác nhọn ABC.Vẽ đường cao AH (H thuộc cạnh BC).Vẽ HE vuông góc với AB (E thuộc AB),HF vuông góc với AC (F thuộc AC).
a) CMR: AEHF là tứ giác nội tiếp
b) CMR: góc ABC + góc HFE = 90o
c) Gọi M là giao điểm của BF và HE,N là giao điểm của HF và CE.
Chứng minh rằng MN song song với BC
Mình cần gấp giúp mình với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) từ đề bài ta có:
\(HE\perp AB,HF\perp AC\Rightarrow\widehat{AEH}+\widehat{AFH}=90^O+90^O=180^O\)
\(\Rightarrow AEHF\) nội tiếp
b) từ câu a\(\rightarrow\widehat{HFE}=\widehat{HAE}=\widehat{HAB}\)
\(\Rightarrow\widehat{ABC}+\widehat{HFE}=\widehat{ABC}+\widehat{BAH}=90^O\)
c) Ta có : AEHF nội tiếp
\(\Rightarrow\widehat{AEF}=\widehat{AHF}=\widehat{ACB}\left(+\widehat{FHC}=90^O\right)\)
→EFCB nội tiếp
\(\Rightarrow\widehat{BEC}=\widehat{BFC}\)
\(\Rightarrow\widehat{BEC}-90^O=\widehat{BFC}-90^O\)
\(\Rightarrow\widehat{HEC}=\widehat{HFB}\)
→EFNM nội tiếp
\(\Rightarrow\widehat{ENM}=\widehat{EFB}=\widehat{ECB}\)
\(\Rightarrow MN//BC\)
a) Ta có: \(\angle AEH+\angle AFH=90+90=180\Rightarrow AEHF\) nội tiếp
b) AEHF nội tiếp \(\Rightarrow\angle EFA=\angle EHA=90-\angle BHE=\angle ABC\)
c) Ta có: \(\angle OAC=\dfrac{180-\angle AOC}{2}=90-\dfrac{1}{2}\angle AOC=90-\angle ABC\)
\(\Rightarrow\angle OAC+\angle ABC=90\Rightarrow\angle OAC+\angle AFE=90\Rightarrow OA\bot EF\)
a) Xét tứ giác AEHF có
\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)
\(\widehat{AEH}=90^0\)(HE⊥AB)
\(\widehat{AFH}=90^0\)(HF⊥AC)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
⇒AH=EF(Hai đường chéo trong hình chữ nhật AEHF)
a) \(\hept{\begin{cases}\widehat{HFE}=\widehat{HAE}\\\widehat{HAE}+\widehat{ABH}=90^O\end{cases}\Rightarrow\widehat{HFE}+\widehat{ABH}=90^O}\)
=> \(\widehat{HFE}+\widehat{ABC}=90^O\)(đpcm)
b) AEHF nội tiếp => \(\widehat{AEF}=\widehat{AHF}\)
Mà \(\widehat{AHF}=\widehat{ACB}\)( cùng phụ với \(\widehat{HAC}\))
=> \(\widehat{AEF}=\widehat{ACB}\)
=> BEFC là tứ giác nội tiếp
\(\Rightarrow\hept{\begin{cases}\widehat{EBF}=\widehat{FCE}\\\widehat{BEM}=\widehat{NFC}=90^O\end{cases}\Rightarrow\widehat{EMB}=\widehat{FNC}}\)
\(\Rightarrow\widehat{EMF}=\widehat{ENF}\)
=> EMNF là tứ giác nội tiếp
=> góc ENM = góc EFB
Mà BEFC nội tiếp => góc EFB = góc ECB
Từ 2 điều trên => góc ENM = góc ECB
=> MN // BC => đpcm
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
b: Xét tứ giác DHEF có
HE//DF
HE=DF
Do đó: DHEF là hình bình hành
a) Ta có: \(HE\perp AB\) , \(HF\perp AC\) -> \(\widehat{HEA}\) + \(\widehat{HFA}=180^o\) -> \(AEHF\) nội tiếp.
b) -> \(\widehat{ABC}+\widehat{HFE}=\widehat{ABH}+\widehat{HAE}=90^o\)
c) Ta có: \(AH\perp BC\) , \(HE\perp AB\) , \(HF\perp AC\) , \(AEHF\) nội tiếp.
-> \(\widehat{AEF}=\widehat{AHF}=\widehat{ACH}\left(\widehat{HAC}=90^O\right)\) -> \(EFCB\:\) nội tiếp.
Mà ta có: \(HE\perp AB\) , \(HF\perp AC\rightarrow\widehat{MEB}=\widehat{NFC}=90^O\)
mà \(\widehat{EFB}=\widehat{EFC}\) do \(EFCB\) nội tiếp.
-> \(\widehat{EBM}=\widehat{FCN}\rightarrow\widehat{EMB}=\widehat{FNC}\)
-> \(\widehat{EMF}=\widehat{ENF}\rightarrow EFNM\) nội tiếp.
-> \(\widehat{ENM}=\widehat{EFM}=\widehat{ECB}\rightarrow MN//BC\)