K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

\(9.\left(x+5\right).\left(x+6\right).\left(x+7\right)=24.x\)

\(\Leftrightarrow\left(9.x+45\right).\left(x+6\right).\left(x+7\right)=24.x\)

\(\Leftrightarrow\left(9.x^2+54.x+45.x+270\right).\left(x+7\right)=24.x\)

\(\Leftrightarrow\left(9.x^2+99.x+270\right).\left(x+7\right)=24.x\)

\(\Leftrightarrow9.x^3+63.x^2+99.x^2+693.x+270.x+1890=24.x\)

\(\Leftrightarrow9.x^3+162.x^2+963.x+1890=24.x\)

\(\Leftrightarrow9.x^3+162.x^2+963.x+1890-24.x=0\)

\(\Leftrightarrow9.x^3+162.x^2+939.x+1890=0\)

\(\Leftrightarrow3.\left(3.x^3+54.x^2+313+630\right)=0\)

\(\Leftrightarrow3.\left(3.x^3+27.x^2+27.x^2+243.x+70.x+630\right)=0\)

\(\Leftrightarrow3.\left(3.x^2.\left(x+9\right)+27.x.\left(x+9\right)+70.\left(x+9\right)\right)=0\)

\(\Leftrightarrow3.\left(x+9\right).\left(3.x^2+27.x+70\right)=0\)

\(\Leftrightarrow\left(x+9\right).\left(3.x^2+27.x+70\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\3.x^2+27.x+70=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-9\\x\notinℝ\end{cases}}\)

Vậy x = -9

3 tháng 3 2020

\(9\left(x+5\right)\left(x+6\right)\left(x+7\right)=24x\)

\(\Leftrightarrow3\left(x+5\right)\left(x+6\right)\left(x+7\right)=8x\)

\(\Leftrightarrow3x^3+54x^2+321x+630=8x\)

\(\Leftrightarrow3x^3+54x^2+313x+630=0\)

\(\Leftrightarrow\left(x+9\right)\left(3x^2+27x+70\right)=0\)

\(\Leftrightarrow x+9=0\)

\(\Leftrightarrow x=9\)

Mà: \(3x^2+27x+70=3\left(x+\frac{9}{2}\right)^2+\frac{37}{4}>0\)

Vậy ..............

14 tháng 11 2019

\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)=24x^2\)

\(\Leftrightarrow x^4-24x^3+203x^2-720x+900=24x^4\)

\(\Leftrightarrow x^4-24x^3+203x^2-720x+900-24x^2=0\)

\(\Leftrightarrow x^4-24x^3+179x^3-720x+900=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-15\right)\left(x^2-7x+30\right)=0\)

có: \(x^2-7x+30\ne0\), nên:

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-15=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=15\end{cases}}\)

7 tháng 8 2018

\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)=24x^2\)

\(\Leftrightarrow\left[\left(x-5\right)\left(x-6\right)\right]\cdot\left[\left(x-3\right)\left(x-10\right)\right]=24x^2\)

\(\Leftrightarrow\left(x^2-11x+30\right)\left(x^2-13x+30\right)-24x^2=0\)

Đặt: \(x^2-13x+30=t\)

Lúc này PT trở thành:

\(t\left(t+2x\right)-24x^2=0\)

\(\Leftrightarrow t^2+2tx-24x^2=0\)

\(\Leftrightarrow t^2+6tx-4tx-24x^2=0\)

\(\Leftrightarrow t\left(t+6x\right)-4x\left(t+6x\right)=0\)

\(\Leftrightarrow\left(t+6x\right)\left(t-4x\right)=0\)

\(\Leftrightarrow\left(x^2-7x+30\right)\left(x^2-17x+30\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-7x+30=0\\x^2-17x+30=0\end{matrix}\right.\)

Ta có: \(x^2-7x+30=\left(x-\dfrac{7}{2}\right)^2+\dfrac{71}{4}>0\)(vô nghiệm)

=> \(x^2-17x+30=0\)

\(\Leftrightarrow\) \(\left(x-15\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-15=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=2\end{matrix}\right.\)

Vậy x = 2 hoặc x = 15

25 tháng 6 2017

\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)=24x^2\) (1)

\(\Leftrightarrow\left(x^2-5x-3x+15\right)\left(x-6\right)\left(x-10\right)=24x^2\)

\(\Leftrightarrow\left(x^2-8x+15\right)\left(x-6\right)\left(x-10\right)=24x^2\)

\(\Leftrightarrow\left(x^3-6x^2-8x^2+48x+15x-90\right)\left(x-10\right)=24x^2\)

\(\Leftrightarrow\left(x^3-14x^2+63x-90\right)\left(x-10\right)=24x^2\)

\(\Leftrightarrow x^4-10x^3-14x^3+140x^2+63x^2-630x-90x+900=24x^2\)

\(\Leftrightarrow x^4-2x^3-22x^3+44x^2+135x^2-270x-450x+900=0\)

\(\Leftrightarrow x^3\left(x-2\right)-22x^2\left(x-2\right)+135x\left(x-2\right)-450\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-22x^2+135x-450\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-15x^2-7x^2+105x+30x-450\right)=0\)

\(\Leftrightarrow\left(x-2\right)\cdot\left[x^2\cdot\left(x-15\right)-7x\left(x-15\right)+30\left(x-15\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-15\right)\left(x^2-7x+30\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-15=0\\x^2-7x+30=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=15\\x\notin R\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=15\end{matrix}\right.\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{2;15\right\}\)

25 tháng 6 2017

PT\(\Leftrightarrow\)\(\left[\left(x-3\right)\left(x-10\right)\right]\left[\left(x-5\right)\left(x-6\right)\right]=24x^2\)

\(\Leftrightarrow\)\(\left(x^2-13x+30\right)\left(x^2-11x+30\right)=24x^2\)

Nhận thấy x=0 không là nghiệm của PT. Chia cả hai vế của phương trình cho \(x^2\) ta được:

PT\(\Leftrightarrow\)\(\left(x-13+\dfrac{30}{x}\right)\left(x-11+\dfrac{30}{x}\right)=24\)

Đặt \(x+\dfrac{30}{x}=t\) (1)

PT\(\Leftrightarrow\)\(\left(t-13\right)\left(t-11\right)=24\)

Tìm được \(\left[{}\begin{matrix}t=17\\t=7\end{matrix}\right.\)

Thay vào (1):\(\left[{}\begin{matrix}x^2-17x+30=0\\x^2-7x+30=0\end{matrix}\right.\)

Tìm được \(\left[{}\begin{matrix}x=15\\x=2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

a)

\((x-3)(x-5)(x-6)(x-10)=24x^2\)

\(\Leftrightarrow [(x-3)(x-10)][(x-5)(x-6)]=24x^2\)

\(\Leftrightarrow (x^2-13x+30)(x^2-11x+30)=24x^2\)

Đặt \(x^2-11x+30=a\). PT trở thành:
\((a-2x)a=24x^2\)

\(\Leftrightarrow a^2-2ax-24x^2=0\)

\(\Leftrightarrow a^2-6ax+4ax-24x^2=0\)

\(\Leftrightarrow a(a-6x)+4x(a-6x)=0\)

\(\Leftrightarrow (a+4x)(a-6x)=0\)

\(\Rightarrow \left[\begin{matrix} a+4x=0\\ a-6x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2-7x+30=0\\ x^2-17x+30=0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} (x-3,5)^2+17,75=0(\text{vô lý})\\ (x-15)(x-2)=0\end{matrix}\right.\)

\(\Rightarrow x=15\) hoặc $x=2$

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

b)

Đặt \(x-7=a\). PT trở thành:

\((a+1)^4+(a-1)^4=272\)

\(\Leftrightarrow a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=272\)

\(\Leftrightarrow 2a^4+12a^2+2=272\)

\(\Leftrightarrow a^4+6a^2-135=0\)

\(\Leftrightarrow (a^2+3)^2-144=0\Leftrightarrow (a^2+3)^2-12^2=0\)

\(\Leftrightarrow (a^2+15)(a^2-9)=0\)

\(\Rightarrow a^2-9=0\Rightarrow a=\pm 3\)

\(\Rightarrow x=a+7=\left[\begin{matrix} 4\\ 10\end{matrix}\right.\)

a: =>|x-7|=3-2x

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)

b: =>|2x-3|=4x+9

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)

c: =>3x+5=2-5x hoặc 3x+5=5x-2

=>8x=-3 hoặc -2x=-7

=>x=-3/8 hoặc x=7/2

3 tháng 10 2020

Ta có : |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| -x + 7 = 0

=> |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| = x - 7

ĐK \(x-7\ge0\Rightarrow x\ge7\)

Khi đó ta có x - 2 > 0 ; x - 3 > 0 ; ... x - 6 > 0

=> |x - 2| + |x - 3| + |x - 4| + |x - 5| + |x - 6| = x - 7

<=> x - 2 + x - 3 + x - 4 + x - 5 + x - 6 = x - 7

=> 5x - 20 = x - 7

=> 4x = 13

=> x = 4,25 (loại)

Vậy x \(\in\varnothing\)