K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)=24x^2\) (1)

\(\Leftrightarrow\left(x^2-5x-3x+15\right)\left(x-6\right)\left(x-10\right)=24x^2\)

\(\Leftrightarrow\left(x^2-8x+15\right)\left(x-6\right)\left(x-10\right)=24x^2\)

\(\Leftrightarrow\left(x^3-6x^2-8x^2+48x+15x-90\right)\left(x-10\right)=24x^2\)

\(\Leftrightarrow\left(x^3-14x^2+63x-90\right)\left(x-10\right)=24x^2\)

\(\Leftrightarrow x^4-10x^3-14x^3+140x^2+63x^2-630x-90x+900=24x^2\)

\(\Leftrightarrow x^4-2x^3-22x^3+44x^2+135x^2-270x-450x+900=0\)

\(\Leftrightarrow x^3\left(x-2\right)-22x^2\left(x-2\right)+135x\left(x-2\right)-450\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-22x^2+135x-450\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-15x^2-7x^2+105x+30x-450\right)=0\)

\(\Leftrightarrow\left(x-2\right)\cdot\left[x^2\cdot\left(x-15\right)-7x\left(x-15\right)+30\left(x-15\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-15\right)\left(x^2-7x+30\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-15=0\\x^2-7x+30=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=15\\x\notin R\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=15\end{matrix}\right.\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{2;15\right\}\)

25 tháng 6 2017

PT\(\Leftrightarrow\)\(\left[\left(x-3\right)\left(x-10\right)\right]\left[\left(x-5\right)\left(x-6\right)\right]=24x^2\)

\(\Leftrightarrow\)\(\left(x^2-13x+30\right)\left(x^2-11x+30\right)=24x^2\)

Nhận thấy x=0 không là nghiệm của PT. Chia cả hai vế của phương trình cho \(x^2\) ta được:

PT\(\Leftrightarrow\)\(\left(x-13+\dfrac{30}{x}\right)\left(x-11+\dfrac{30}{x}\right)=24\)

Đặt \(x+\dfrac{30}{x}=t\) (1)

PT\(\Leftrightarrow\)\(\left(t-13\right)\left(t-11\right)=24\)

Tìm được \(\left[{}\begin{matrix}t=17\\t=7\end{matrix}\right.\)

Thay vào (1):\(\left[{}\begin{matrix}x^2-17x+30=0\\x^2-7x+30=0\end{matrix}\right.\)

Tìm được \(\left[{}\begin{matrix}x=15\\x=2\end{matrix}\right.\)

5 tháng 3 2017

Đặt pt là (1)

Ta có :

(1) <=> \(\left[\left(x-3\right)\left(x-10\right)\right]\left[\left(x-5\right)\left(x-6\right)\right]-24x^2=0\)

\(\Leftrightarrow\left(x^2-13x+30\right)\left(x^2-11x+30\right)-24x^2=0\)

Đặt \(x^2-12x+30=t\) (*)

Phương trình trở thành \(\left(t-x\right)\left(t+x\right)-24x^2=0\)

\(\Leftrightarrow t^2-x^2-24x^2=0\)

\(\Leftrightarrow t^2-25x^2=0\)

\(\Leftrightarrow\left(t-5x\right)\left(t+5x\right)=0\)

Thay (*) vào ta có :

\(\left(x^2-17x+30\right)\left(x^2+7x+30\right)=0\)

Để ý thấy \(x^2-7x+30\ne0\)

\(\Rightarrow x^2-17x+30=0\)

\(\Leftrightarrow x^2-15x-2x+30=0\)

\(\Leftrightarrow x\left(x-15\right)-2\left(x-15\right)=0\)

\(\Leftrightarrow\left(x-15\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=15\end{matrix}\right.\)

Vậy S={1 ; 15 }

6 tháng 3 2017

yeu cảm ơn bạn nhìu

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

a)

\((x-3)(x-5)(x-6)(x-10)=24x^2\)

\(\Leftrightarrow [(x-3)(x-10)][(x-5)(x-6)]=24x^2\)

\(\Leftrightarrow (x^2-13x+30)(x^2-11x+30)=24x^2\)

Đặt \(x^2-11x+30=a\). PT trở thành:
\((a-2x)a=24x^2\)

\(\Leftrightarrow a^2-2ax-24x^2=0\)

\(\Leftrightarrow a^2-6ax+4ax-24x^2=0\)

\(\Leftrightarrow a(a-6x)+4x(a-6x)=0\)

\(\Leftrightarrow (a+4x)(a-6x)=0\)

\(\Rightarrow \left[\begin{matrix} a+4x=0\\ a-6x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2-7x+30=0\\ x^2-17x+30=0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} (x-3,5)^2+17,75=0(\text{vô lý})\\ (x-15)(x-2)=0\end{matrix}\right.\)

\(\Rightarrow x=15\) hoặc $x=2$

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

b)

Đặt \(x-7=a\). PT trở thành:

\((a+1)^4+(a-1)^4=272\)

\(\Leftrightarrow a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=272\)

\(\Leftrightarrow 2a^4+12a^2+2=272\)

\(\Leftrightarrow a^4+6a^2-135=0\)

\(\Leftrightarrow (a^2+3)^2-144=0\Leftrightarrow (a^2+3)^2-12^2=0\)

\(\Leftrightarrow (a^2+15)(a^2-9)=0\)

\(\Rightarrow a^2-9=0\Rightarrow a=\pm 3\)

\(\Rightarrow x=a+7=\left[\begin{matrix} 4\\ 10\end{matrix}\right.\)

29 tháng 8 2021

1) \(2\left(x+3\right)>5\left(x-1\right)+2\Leftrightarrow2x+6>5x-5+2\Leftrightarrow3x>9\Leftrightarrow x>3\)

2) \(x^2-x\left(x+2\right)>3x-10\)

\(\Leftrightarrow x^2-x^2-2x>3x-10\Leftrightarrow5x< 10\Leftrightarrow x< 2\)

3) \(x\left(x-5\right)< \left(x+1\right)^2\)

\(\Leftrightarrow x^2-5x< x^2+2x+1\Leftrightarrow7x>-1\Leftrightarrow x>-\dfrac{1}{7}\)

4) \(15-2\left(x-7\right)< 2\left(x-3\right)-6\)

\(\Leftrightarrow15-2x+14< 2x-6-6\Leftrightarrow4x>41\Leftrightarrow x>\dfrac{41}{4}\)

1: Ta có: \(2\left(x+3\right)>5\left(x-1\right)+2\)

\(\Leftrightarrow2x+6>5x-5+2\)

\(\Leftrightarrow-3x>-9\)

hay x<3

2: Ta có: \(x^2-x\left(x+2\right)>3x-10\)

\(\Leftrightarrow x^2-x^2-2x>3x-10\)

\(\Leftrightarrow-5x>-10\)

hay x<2

3: Ta có: \(x\left(x-5\right)\le\left(x+1\right)^2\)

\(\Leftrightarrow x^2-5x-x^2-2x-1\ge0\)

\(\Leftrightarrow-7x\ge1\)

hay \(x\le-\dfrac{1}{7}\)

ĐKXĐ: \(x\notin\left\{-1;-2;-3;-4\right\}\)

Ta có: \(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x+4}{\left(x+1\right)\left(x+4\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x+4-x-1}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^2+5x+4}{6\left(x+1\right)\left(x+4\right)}\)

\(\Leftrightarrow\dfrac{18}{6\left(x+1\right)\left(x+4\right)}=\dfrac{x^2+5x+4}{6\left(x+1\right)\left(x+4\right)}\)

Suy ra: \(x^2+5x+4=18\)

\(\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow x^2+7x-2x-14=0\)

\(\Leftrightarrow x\left(x+7\right)-2\left(x+7\right)=0\)

\(\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

Vậy: S={-7;2}

22 tháng 3 2021

thank

12 tháng 11 2018

(x-3)(x-5)(x-6)(x-10)-24x2

=(x-3)(x-10)(x-5)(x-6)-24x2

=(x2​-13x​+30)(x2-11x+30)-24x2

Đ​ặt x2-12x+30=k

Khi đ​ó​ ta có:

(k-x)(k+x)-24x2=k2​-x2-24x2=k2-25x2

=(k-5x)(k+5x)

=(x2-12x+30-5x​)(x2-12x​+30+5x)

=(x​2-17x+30)(x​2-7x+30)

=(x2-2x-15x+30)(x2​-7x+30)

=(x-2)(x-15)(x2-7x+30)

28 tháng 1 2022

\(1,\) thiếu đề

\(2,\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

\(\Leftrightarrow\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)}{30}-\dfrac{150}{30}\)

\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow25x+10-80x+10=24x+12-150\)

\(\Leftrightarrow-55x+20=24x-138\)

\(\Leftrightarrow24x-138+55x-20=0\)

\(\Leftrightarrow79x-158=0\)

\(\Leftrightarrow x=2\)

\(3,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\\x\ne3\end{matrix}\right.\\ \dfrac{x}{2x-6}+\dfrac{x}{2x-2}=\dfrac{-2x}{\left(x+1\right)\left(3-x\right)}\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2\left(x-3\right)}+\dfrac{1}{2\left(x-1\right)}-\dfrac{2}{\left(x+1\right)\left(x-3\right)}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4\left(x-1\right)}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{x^2-1}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{x^2-2x-3}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4x-4}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)

\(\Leftrightarrow x.\dfrac{x^2-1+x^2-2x-3-4x+4}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x.\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)

 

 

\(\Leftrightarrow x.\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x.\dfrac{x}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x=0\)