K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

a) Do : \(\overline{abc}⋮37\)

\(\Leftrightarrow100a+10b+c⋮37\)

\(\Rightarrow1000a+100b+10c⋮37\)

Lại có : \(999a⋮37\)

\(\Rightarrow1000a-999a+100b+10c⋮37\)

\(\Leftrightarrow100b+10c+a⋮37\)

\(\Leftrightarrow1000b+100c+10a⋮37\)

\(\Leftrightarrow1000b-999b+100c+10a⋮37\)

\(\Leftrightarrow100c+10a+b⋮37\)

hay : \(\overline{cab}⋮37\) (ddpcm)

b) Ta có : \(xy+12=x+y\)

\(\Leftrightarrow x+y-xy=12\)

\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=11\)

\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=11\)

Do đó : x-1 và y-1 là các cặp ước của 11

Rồi bạn lập bảng xét các ước của 11.

a.Xét tổng\(11.\overline{abc}+\overline{cab}\)ta có:

\(11.\overline{abc}+\overline{cab}=1110a+111b+111c=111\left(10a+b+c\right)=37.3\left(10a+b+c\right)⋮37\)

Mà \(11.\overline{abc}⋮37\Rightarrow\overline{cab}⋮37\)

28 tháng 2 2021

(abc) chia hết cho 37

->100.a + 10.b + c chia hết cho 37 

-> 1000.a + 100.b + 10.c chia hết cho 37 

-> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 

-> 100.b + 10.c + a = (bca) chia hết cho 37 (bca) chia hết cho 37

-> 100.b+10.c+a chia hết cho 37 

-> 1000.b + 100.c + 10.a chia hết cho 37 

-> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 

-> 100.c + 10.a + b = (cab) chia hết cho 37

3 tháng 2 2020

minh lam dc ban co k ko

21 tháng 2 2023

17 tháng 5 2018

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

18 tháng 5 2018

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)

26 tháng 7 2016

M=abc+bca+cab= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b) = 1011*(a+b+c) =3*337*(a+b+c) 
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn

Vậy M không phải là số chính phương

1 tháng 8 2016

Cảm ơn bạn bạn