Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: abc\(⋮\)37 => 100.abc \(⋮\)37 => abc00 \(⋮\)37
=> (ab.1000 + c00) \(⋮\)37
=>[ab.999 + ( c00 + ab) ] \(⋮\)37
=>( ab . 99 + cab) \(⋮\)37
mà ab.999 = ab .27 .37 \(⋮\)37
=> cab \(⋮\)37
Vậy nếu abc \(⋮\)37 thì cab \(⋮\)37
b)1+3+5+7+9+...+(2x-1)=225
Với mọi x \(\in\)N, ta có 2x - 1 là số lẻ
Ta đặt A = 1 + 3 + 5 + 7 + 9+...+ (2x-1)=225
=> A là tổng của các số lẻ liên tiếp từ 1 đến (2x -1)
Số số hạng của A là:
[(2x - 1 - 1) : 2 + 1 = x (số hạng)
=> A= [(2x - 1) + 1] . x : 2 = x2
Mà A= 225 => x 2 = 225 = 152
\(\Rightarrow x=15\)
Tham khảo
Đáp án:
abc = 100a + 10b + c
=> 100a + 10b + c chia hết cho 37
=> 10 x ( 100a + 10b + c) chia hết cho 37
<=> 1000a + 100b + 10 c chia hết cho 37
Lại có 999 chia hết cho 37 ( 999 = 3.3.3.37)
=> 999a chia hết cho 37
=> 1000a + 100b + 10 c - 999a chia hết cho 37
<=> a + 100b + 10 c chia hết cho 37
=> 10 x ( a + 100b + 10c) chia hết cho 37
<=> 1000b + 100c + 10a chia hết cho 37
999b chia hết cho 37
=> 1000b + 100c + 10a - 999b chia hết cho 37
<=> 100c + 10a + b chia hết cho 37
<=> cab chia hết cho 37
Ta có: abc⋮37
⇒100a+10b+c⋮37
⇒1000a+100b+10c⋮37
⇒1000a-999a+100b+10c⋮37(vì 999a⋮37)
⇒100b+10c+a⋮37
hay bca⋮37
Ta có: bca⋮37
⇒100b+10c+a⋮37
⇒1000b+100c+10a⋮37
⇒1000b-999b+100c+10a⋮37(vì 999b⋮37)
⇒100c+10a+b⋮37
hay cab⋮37(đpcm)
B1 a
gọi 4 số TN liên tiếp là :
a ; a+1 ;a+2 ;a+3
lấy a+3-a=3 chia hết cho 3
Bài 2
có 4n+3 chia hết cho 2n+1 (1)
lại có 2n+1 chia hết cho 2n+1
=>4n+2 chia hết cho 2n+1 (2)
Lấy (1)-(2)
=>1chia hết cho 2n+1
=>2n+1=1 hoăc -1
tự giải tiếp
(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
a) Ta có :
\(x^2-2x+1=6y^2-2x+2\)
\(\Leftrightarrow x^2=6y^2+1\)
\(\Leftrightarrow x^2-1=6y^2\)
Mà \(6y^2⋮2\)
\(\Leftrightarrow6y^2=\left(x-1\right)\left(x+1\right)⋮2\)
Mặt khác : \(\left(x-1\right)+\left(x+1\right)=2x⋮2\)
\(\Leftrightarrow x-1;x+1\)cùng chẵn
\(\Rightarrow x-1;x+1\)là hai số chẵn liên tiếp
\(\Rightarrow\left(x-1\right)\left(x+1\right)⋮8\)
\(\Leftrightarrow6y^2⋮8\)
\(\Leftrightarrow3y^2⋮4\)
\(\Leftrightarrow y^2⋮4\)
\(\Leftrightarrow y⋮2\)
Do \(y\in P\):
\(\Rightarrow y=2\)
\(\Rightarrow x=5\)
Vậy........
b) Xét hiệu : \(A=9\left(7x+4y\right)-2\left(13x+18y\right)\)
\(\Rightarrow A=63x+36y-26x-36y\)
\(\Rightarrow A=37x\)
\(\Rightarrow A⋮37\)
Vì \(7x+4y⋮37\)
\(\Rightarrow9\left(7x+4y\right)⋮37\)
Mà \(A⋮37\)
\(\Rightarrow2\left(13x+18y\right)⋮37\)
Do 2 và 37 nguyên tố cùng nhau :
\(\Rightarrow13x+18y⋮37\)
Vậy...................
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
minh lam dc ban co k ko