K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: abc⋮37

⇒100a+10b+c⋮37

⇒1000a+100b+10c⋮37

⇒1000a-999a+100b+10c⋮37(vì 999a⋮37)

⇒100b+10c+a⋮37

hay bca⋮37

Ta có: bca⋮37

⇒100b+10c+a⋮37

⇒1000b+100c+10a⋮37

⇒1000b-999b+100c+10a⋮37(vì 999b⋮37)

⇒100c+10a+b⋮37

hay cab⋮37(đpcm)

13 tháng 6 2021

Tham khảo

13 tháng 6 2021

Tham khảo 
 

Đáp án:

 abc = 100a + 10b + c

=> 100a + 10b + c chia hết cho 37

=> 10 x ( 100a + 10b + c) chia hết cho 37 

<=> 1000a + 100b + 10 c chia hết cho 37 

Lại có 999 chia hết cho 37 ( 999 = 3.3.3.37)

=> 999a chia hết cho 37

=> 1000a + 100b + 10 c - 999a chia hết cho 37

<=> a + 100b + 10 c chia hết cho 37

 

=> 10 x ( a + 100b + 10c) chia hết cho 37 

<=> 1000b + 100c + 10a chia hết cho 37 

999b chia hết cho 37

=> 1000b + 100c + 10a - 999b chia hết cho 37

<=> 100c + 10a + b chia hết cho 37

<=> cab chia hết cho 37

15 tháng 7 2015

(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37 
=> 1000.a + 100.b + 10.c chia hết cho 37 
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
=> 100.b + 10.c + a = (bca) chia hết cho 37 

4 tháng 8 2016

 (abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

2 tháng 8 2015

(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

2 tháng 8 2015

top scorer:Chỉ đc cái sao chép là giỏi

a)Ta có: abc\(⋮\)37 => 100.abc \(⋮\)37 => abc00 \(⋮\)37

=> (ab.1000 +  c00\(⋮\)37

=>[ab.999 + ( c00  + ab) ] \(⋮\)37

=>( ab . 99 + cab) \(⋮\)37

mà ab.999 = ab .27 .37 \(⋮\)37

=> cab \(⋮\)37

Vậy nếu abc \(⋮\)37 thì cab \(⋮\)37

b)1+3+5+7+9+...+(2x-1)=225

Với mọi x \(\in\)N, ta có 2x - 1 là số lẻ

Ta đặt A = 1 + 3 + 5 + 7 + 9+...+ (2x-1)=225

=> A là tổng của các số lẻ liên tiếp từ 1 đến (2x -1)

Số số hạng của A là:

[(2x - 1 - 1) : 2 + 1 = x (số hạng)

=> A= [(2x - 1) + 1] . x : 2 = x2

Mà A= 225 => x = 225 = 152

\(\Rightarrow x=15\)

2 tháng 11 2018

ta co:abc=100a+10b+1c=111.abc chia het cho 37

        bca=100b.10c.1a=111bca chia het cho 37

        cab=100c.10a.1b=111cba

=>abc,bca,cab deu chia het cho 37

25 tháng 11 2021

Số (abc) chia hết cho 37 => 100a + 10b + c chia hết cho 37 =>(Nhân 10 vô) 1000a + 100b + 10c chia hết cho 37 (1). Trừ cho 999a thì (1) vẫn chia hết cho 37 do 999 chia hết cho 37 từ đó suy ra đpcm!

23 tháng 10 2015

Tham khảo câu hỏi tương tự nha bạn 

CHÚC BẠN HỌC TỐT NHA !

26 tháng 10 2018

(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

26 tháng 10 2018

 (abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

3 tháng 7 2016

 Ta có abc chia hết cho 37 thì abc0 chia hết cho 37. 
-> a000 + bc0 chia hết cho 37 
-> 1000xa +bc0 chia hết cho 37 
-> 999xa + a + bc0 chia hết cho 37 
-> 27x37xa + bca chia hết cho 37 
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.

3 tháng 7 2016

abc ⋮ 37

=> abc x 10 ⋮ 37

=> ( 100a + 10b + c) .10 ⋮ 37

=> 1000a+100b+10c ⋮37

=> 999a + ( 100b+10c+a)⋮37

=> 37.(27a) + bca ⋮ 37

Mà 37(27a)⋮37 nên bca chia hết cho 37.

bca ⋮ 37 nên bca.10⋮37

=> ( 100b + 10c + a ) .10 ⋮37

=> 1000b + 100c +10a ⋮37

=> 999b +(100c+10a+b)⋮37

=> 37(27b) + cab ⋮ 37

Mà 37 . (27b)⋮37 nên cab ⋮ 37