cho tam giac ABC, ke AH vuong goc voi BC. Biet AB=5cm, BH=3cm, BC=8 cm. tinh do dai cac canh AH,HC,AC?
giup mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC cân ở A nên \(AB=AC=AH+HC=8+3=11\left(cm\right)\)
Tam giác AHB vuông tại H ,theo định lí Pitago ta có :
\(AH^2+HB^2=AB^2\)
=> \(8^2+HB^2=11^2\)
=> \(HB^2=11^2-8^2=57\)
=> \(HB=\sqrt{57}\left(cm\right)\)
Tam giác BHC vuông tại H,theo định lí Pitago ta có :
\(BH^2+HC^2=BC^2\)
=> \(\left(\sqrt{57}\right)^2+3^2=BC^2\)
=> \(57+3^2=BC^2\)
=> \(BC^2=57+9=66\)
=> \(BC=\sqrt{66}\approx7,94\left(cm\right)\)
Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)
a) Do AH vuông góc với BC nên:
Góc AHB= Góc AHC=90 độ
Ta có: Góc BAH= 90 độ- góc B(1)
Góc CAH=90 độ- góc C(2)
Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)
Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH
Xét tam giác ABH và tam giác ACH, có:
Góc BAH= Góc CAH( CM trên)
Chung AH
Góc AHB=Góc AHC( Đều bằng 90 độ)
=> Tam giác ABH=Tam giác ACH( G-c-g)
Khi đó: HB=HC( Cặp cạnh tương ứng)
-------> ĐPCM
Vì AH vuông góc với BC
Xét tam giác AHB vuông ta có
AB2= BH2+AH2(áp dụng định lí Py-ta-go)
132= BH2+122
169= BH2+144
BH2=169-144
BH2=25
BH=\(\sqrt{25}\)
BH=5(cm)
Vì AH vuông góc với BC
Xét tam giác AHC vuông ta có
AC2=AH2+HC2
AC2=122+162
AC2=144+256
AC2=400
AC=\(\sqrt{400}\)
AC=20
Ta có BC= BH+HC
BC=5+16
BC=21(cm)
a) Xét 2 tam giác vuông AHB và tam giác AHC có:
AB = AC (gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)
=>HB = HC (2 cạnh tương ứng)
=> góc A1= góc A2 (2 góc tương ứng)
b) Ta có : BC = HB + HC
mà HB = HC (cmt)
BC = 8 (cm)
=> HB = HC = BC/2 = 8/2= 4 (cm)
Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:
AB^2 = AH^2 + HB^2
hay 5^2 = AH^2 + 4^2
=> AH = 5^2 - 4^2 =25 - 16= 9
=> AH = căn bậc 2 của 9 = 3 (cm)
c)Xét 2 tam giác vuông BHD và tam giác CHE có:
HB = HC (cmt)
Góc B = góc C ( vì tam giác ABC cân tại A)
=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)
=> BD= CE (2 cạnh tương ứng)
Xét 2 tam giác ADI và tam giác AEI có:
góc A1 = góc A2 (cmt)
AI là cạnh chung
AD =AE ( vì AB = AC; BD = CE)
=> tam giác ADI = tam giác AEI (c-g-c)
=> góc I1 = góc I2 (2 góc tương ứng)
mà góc I1 + góc I2 = 180 độ
=> góc I1 = góc I2 = 180/ 2= 90 (độ)
=> AI vuông góc với DE
=> AH cũng vuông góc với DE
mặt khác: AH lại vuông góc với BC
=> DE // BC (đpcm)
1. Cho tam giac ABC vuong tai A duong cao AH.
a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;
b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.
2. Cho tam giac ABC vuong tai A duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.
3. Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.
a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;
b) Tinh do dai cac doan thang BH, CH.
4. Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang
duong cao do chia ra tren canh huyen
5. Cho mot tam giac vuong, biet ti so hai canh goc vuong la $\frac{5}{12}$512 , canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua
canh goc vuong tren canh huyen.
6. Cho tam giac ABC vuong tai A. Biet $\frac{AB}{AC}=\frac{5}{7}$ABAC =57 , duong cao AH= 15cm. Tinh HB, HC.
7. Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua
hinh thang ABCD
8. Cho tam giac ABC vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.
9. Cho tam giac ABC vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm.Tinh do dai cac doan BH, HC.
10. Cho tam giac ABC vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, $\frac{HB}{HC}=\frac{1}{4}$HBHC =14 .
11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheoAC va BD vuong goc voi nhau o O.
a) Tinh do dai cac doan OB, OD;
b) Tinh do dai duong cheo AC;
c) Tinh dien tich hinh thang ABCD
Giải:
Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:
AH2+BH2=AB2AH2+BH2=AB2
AH2=AB2−BH2AH2=AB2−BH2
AH2=52−32AH2=52−32
⇒AH2=16⇒AH2=16
⇒AH=4(cm)⇒AH=4(cm)
Ta có:
BH+HC=BCBH+HC=BC
⇒HC=BC−BH⇒HC=BC−BH
⇒HC=8−3⇒HC=8−3
⇒HC=5(cm)⇒HC=5(cm)
Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:
AH2+HC2=AC2AH2+HC2=AC2
42+52=AC242+52=AC2
⇒AC2=41⇒AC2=41
⇒AC=41−−√(cm)
CHÚC HỌC GIỎI
Hình tự vẽ nha bạn :)
Áp dụng định lí Pytago trong tam giác vuông ABH , ta có :
AH2 + BH2 = AB2
=> AH2 = AB2 - BH2 = 52 - 32
=> AH2 = 25 - 9 = 16
=> AH = \(\pm4\)
Mà AH > 0 => AH = 4 cm
Lại có :
BH + HC = BC
=> HC = BC - BH = 8 - 3
=> HC = 5cm
Áp dụng định lí Pytago trong tam giác vuông AHC, ta có :
AC2 = AH2 + HC2
=> AC2 = 42 + 52 = 16 + 25
=> AC2 = 41
=> AC = \(\pm\sqrt{41}\)
Mà AC > 0 => AC = \(\sqrt{41}\) cm
Vậy AH = 4 cm ; HC = 5 cm ; AC = \(\sqrt{41}\)cm