K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

Gọi x; y; z là độ dài ba cạnh tam giác vuông với z là cạnh huyền thì theo đề bài,ta có: 

\(z>y\ge x\ge1\) và

\(\hept{\begin{cases}x^2+y^2=z^2\left(\text{Định lí Pythagoras}\right)\\\frac{xy}{2}=x+y+z\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=z^2\left(1\right)\\xy=2\left(x+y+z\right)\left(2\right)\end{cases}}\)   

Thay (2) lên (1) suy ra \(z^2=\left(x+y\right)^2-4\left(x+y+z\right)\)

\(\Leftrightarrow z^2+4z=\left(x+y\right)^2-4\left(x+y\right)\)

\(\Leftrightarrow z^2+4z+4=\left(x+y\right)^2-4\left(x+y\right)+4\)

\(\Leftrightarrow\left(z+2\right)^2=\left(x+y-2\right)^2\) (*)

Do \(z>y\ge x\ge1\) nên cả hai vế cùng không âm.

Do đó từ (*) suy ra \(z+2=x+y-2\Leftrightarrow z=x+y-4\)

Thay ngược lên (2) và giải tiếp bằng cách phân tích đa thức thành nhân tử và lập bảng xét ước:P.

Note: Em không chắc đâu ạ!

29 tháng 8 2016

Bạn ơi cái này là 2 cạnh góc vuông hay là một cạch gv 1 cạnh huyeeng bn

29 tháng 8 2016

pn hỏi mk ko hỉu

3 tháng 10 2016

ngu quá . Có vậy mà cux ko giải đc

4 tháng 10 2016

Bố mày giải được r nhé cưng 

1 tháng 12 2016

Gọi x,y,zx,y,z là các cạnh của tam giác vuông (1≤x≤y<z)(1≤x≤y<z). Ta có :

                          x2+y2=z2(1)x2+y2=z2(1)

                          xy=2(x+y+z)(2)xy=2(x+y+z)(2)

Từ (1)(1) ta có :

z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4

                                                            ⇒(x+y−2)2=(z+2)2⇒(x+y−2)2=(z+2)2 

                                                            ⇒x+y−2=z+2(x+y≥2)⇒x+y−2=z+2(x+y≥2)

Thay z=x+y−4z=x+y−4 vào (2)(2) ta được :

            (x−4)(y−4)=8(x−4)(y−4)=8

⇔x−4=1;y−4=8⇔x−4=1;y−4=8 hoặc x−4=2;y−4=4x−4=2;y−4=4

⇔x=5;y=12⇔x=5;y=12 hoặc x=6;y=8x=6;y=8

24 tháng 5 2020

lalallalalallalalla mij k djd jfjfj fiiddi ididi iddiidid didiididid idid idid idi didi dit con me chung may cho chet vois ogs

29 tháng 8 2016

gọi 2 cạnh góc vuông lần lượt là a và b(a,b có vai trò như nhau;a,bϵ N)

thì độ dài cạnh huyền là\(\sqrt{a^2+b^2}\)

theo đề bài ta có: \(2.\frac{1}{2}a.b=3\left(a+b+\sqrt{a^2+b^2}\right)\)

→ab-3a-3b=3\(\sqrt{a^2+b^2}\)

\(a^2b^2+9a^2+9b^2-6a^2b-6ab^2+18ab=9a^2+9b^2\)

\(a^2b^2-6a^2b-6ab^2+18ab=0\)

→ab-6a-6b+18=0→(a-6)(b-6)=18=1.18=2.9=3.6(vì a,b>0→a-6;b-6>-6 nên ta loại các giá trị âm)

ta có bảng:

a-6     1                               2                              3

b-6      18                            9                               6

a           7                              8                              9

b           24                              15                         12

thử lại ta có tất cả đều t/m

vậy (a,b)ϵ\(\left\{\left(7,24\right);\left(8,15\right);\left(9,12\right)\right\}\)

 

21 tháng 5 2017

Đề bài này nên là các tam giác vuông

các tam giác là (3,4,5);(5,12,13)

15 tháng 9 2017

Gọi x,y,zx,y,z là các cạnh của tam giác vuông (1≤x≤y<z)(1≤x≤y<z). Ta có :

                          x2+y2=z2(1)x2+y2=z2(1)

                          xy=2(x+y+z)(2)xy=2(x+y+z)(2)

Từ (1)(1) ta có :

z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4

                                                            ⇒(x+y−2)2=(z+2)2⇒(x+y−2)2=(z+2)2 

                                                            ⇒x+y−2=z+2(x+y≥2)⇒x+y−2=z+2(x+y≥2)

Thay z=x+y−4z=x+y−4 vào (2)(2) ta được :

            (x−4)(y−4)=8(x−4)(y−4)=8

⇔x−4=1;y−4=8⇔x−4=1;y−4=8 hoặc x−4=2;y−4=4x−4=2;y−4=4

⇔x=5;y=12⇔x=5;y=12 hoặc x=6;y=8

Gọi độ dài cạnh góc vuông của tam giác là a,ba,b, độ dài cạnh huyền là cc (ĐK: a,b,c∈Z+a,b,c∈Z+;a+b>c;c>a;c>ba+b>c;c>a;c>b)

Theo đề bài:

a2+b2=c2a2+b2=c2 (Định lí Py−ta−goPy−ta−go)

và ab=3.(a+b+c)ab=3.(a+b+c)

⟺2ab=6(a+b+c)⟺2ab=6(a+b+c)

⟺a2+2ab+b2=c2+6(a+b+c)⟺a2+2ab+b2=c2+6(a+b+c)

⟺(a+b)2−6(a+b)+9=c2+6c+9⟺(a+b)2−6(a+b)+9=c2+6c+9

⟺(a+b−3)2=(c+3)2⟺(a+b−3)2=(c+3)2

⟺a+b−3=c+3∨a+b−3=−3−c⟺a+b−3=c+3∨a+b−3=−3−c

⟺a+b=c+6∨a+b=−c⟺a+b=c+6∨a+b=−c (TH sau vô lí vì a+b>0>−ca+b>0>−c)

⟺a+b=c+6⟺a+b=c+6.

⟺6a+6b=6c+36⟺6a+6b=6c+36 (1)(1)

Vì a2+b2=c2a2+b2=c2

⟺(a+b)2−2ab=c2⟺(a+b)2−2ab=c2

⟺(c+6)2−2ab=c2⟺(c+6)2−2ab=c2

⟺c2+12c+36−2ab=c2⟺c2+12c+36−2ab=c2

⟺12c+36=2ab⟺12c+36=2ab

⟺6c+18=ab⟺6c+18=ab (2)(2)

Từ (1),(2)(1),(2) →6a+6b−ab=6c+36−6c−18→6a+6b−ab=6c+36−6c−18

⟺ab−6a−6b+18=0⟺ab−6a−6b+18=0

⟺(a−6)(b−6)=18⟺(a−6)(b−6)=18

Giả sử a≥ba≥b

Giải phương trình tích trên được (a;b)=(24;7);(12;9);(15;8)(a;b)=(24;7);(12;9);(15;8)

Tìm được (a;b;c)=(24;7;25);(12;9;15);(15;8;17)