Tìm giá trị nhỏ nhất của hàm số f(x)=x+\(\frac{1}{x}\) với x\(\ge\)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{\dfrac{2\left(x-1\right)}{x-1}}+1=2\sqrt{2}+1\)
\(f\left(x\right)_{min}=2\sqrt{2}+1\)
Ta có: \(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)
Vì x > 1 nên x - 1 > 0 và \(\dfrac{2}{x-1}>0\)
Áp dụng bất đẳng thức cô-si cho hai số dương \(x-1;\dfrac{2}{x-1}\) ta được:
\(x-1+\dfrac{2}{x-1}\ge2.\sqrt{x-1.\dfrac{2}{x-1}}=2\sqrt{2}\)
\(=>f\left(x\right)=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{2}+1\)
⇒ Giá trị bé nhất của f(x) là 2√2 + 1 .
Dấu “=” xảy ra khi và chỉ khi x - 1 = \(\dfrac{2}{x-1}\) và x > 1 ⇔ x = 1 + √2
\(f\left(x\right)=x\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)
tách x2+32 = (x2-4) +32
=) f(x) = (x+2)/4 + 9/(x-2) = [(x-2)/4 +9/(x-2)] + 1
cô si 2 số trong ngoặc vuông làm mất (X-2) là xong
Ta có: \(y-\frac{29}{3}=2x^2+\frac{5}{x+1}-\frac{29}{3}\)
\(=\frac{6x^2\left(x+1\right)+15-29\left(x+1\right)}{3\left(x+1\right)}\)
\(=\frac{6x^3+6x^2+15-29x-29}{3\left(x+1\right)}\)
\(=\frac{6x^3+6x^2-29x-14}{3\left(x+1\right)}\)
\(=\frac{\left(6x^3-12x^2\right)+\left(18x^2-36x\right)+\left(7x-14\right)}{3\left(x+1\right)}\)
\(=\frac{\left(x-2\right)\left(6x^2+18x+7\right)}{3\left(x+1\right)}\ge0\left(\forall x\right)\) vì \(x+1\ge3>0\)
\(\Rightarrow y\ge\frac{29}{3}\)
Dấu "=" xảy ra khi: \(x=2\)
Vậy \(min_y=\frac{29}{3}\Leftrightarrow x=2\)
\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{4}{x}+\dfrac{1}{1-x}-1\)
\(f\left(x\right)\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)
\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)
f(x) = x3 +3/x = x3 + 1/x +1/x +1/x
cô si 4 số làm mất x là xong
Chọn A
Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.
Vậy giá trị lớn nhất M = f(2)
Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .
Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.
Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).
=> f(0) > f(4)
Vậy giá trị nhỏ nhất m = f(4)
blabla..