K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2019

272`6`54-543564396738

8 tháng 8 2016

\(x^2+y^2+z^2=2xyz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+z^2=0\)

\(\Leftrightarrow\left(x-y\right)^2+x^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-y=0\\z=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=y\\z=0\end{array}\right.\)

8 tháng 8 2016

2xyz chứ có phải 2xy đâu :)

DD
4 tháng 7 2021

Không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\).

Khi đó ta có: \(13=xyz+x^2+y^2+z^2\ge z^3+3z^2\)

suy ra \(z=1\)

\(12=xy+x^2+y^2\ge y^2+y^2+y^2=3y^2\)

\(\Rightarrow y=1\)hoặc \(y=2\).

Với \(y=1\)\(x^2+1+1+x=13\Leftrightarrow x^2+x-11=0\)không có nghiệm nguyên dương. 

Với \(y=2\)\(x^2+2^2+1^2+1.2.x=13\Leftrightarrow x^2+2x-8=0\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)

\(\Rightarrow x=2\)thỏa mãn. 

Vậy phương trình có nghiệm là \(\left(1,2,2\right)\)và các hoán vị. 

NV
29 tháng 3 2021

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

10 tháng 2 2017

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

Do vai trò của x,y,z là như nhau nên không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\)(nguyên dương)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}.\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}.\)

\(\Rightarrow z\le1\) mà    \(z\ge1\)

\(\Rightarrow z=1.\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=2-\frac{1}{1}=1\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}.\)

\(\Rightarrow y\le2\)mà   \(y\ge1\)

\(\Rightarrow y\in\left\{1;2\right\}.\)

*Nếu \(y=1\Rightarrow\frac{1}{x}=1-\frac{1}{1}=0\Rightarrow x=\frac{1}{0}\)(vô lí)

*Nếu \(y=2\Rightarrow\frac{1}{x}=2-\frac{1}{2}=\frac{1}{2}\Rightarrow x=2\)(thỏa mãn)

Vậy \(x=y=2,z=1.\)

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn