Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)
\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)
\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)
\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)
\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)
- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)
- Với \(x=2\Rightarrow y=1\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
Áp dụng bất đăng thức Cauchy : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)
Nên \(P\ge\frac{3}{\sqrt[3]{xyz}}+2xyz\). Đẳng thức khi : x=y=z
Đặt \(t=\sqrt[3]{xyz}\)
Cũng theo Cauchy : \(1=x^2+y^2+z^2\ge3\sqrt{x^2y^2z^2}\). Đẳng thức khi x=y=z
Nên ta có 0<t\(\le\frac{\sqrt{3}}{3}\)
Xét hàm số \(f\left(t\right)=\frac{3}{t}+2t^3\) với 0<t\(\le\frac{\sqrt{3}}{3}\)
Tính \(f'\left(t\right)=-\frac{3}{t^2}+6t^2=\frac{3\left(2t^2-1\right)}{t^2}\)
Lập bảng biến thiên của f(t) rồi chỉ ra : \(f\left(t\right)\ge\frac{29\sqrt{3}}{9}\) với mọi t\(\in\left(0;\frac{\sqrt{3}}{3}\right)\)
Từ đó \(P\ge\frac{29\sqrt{3}}{9}\)
Giá trị nhỏ nhất của P là \(\frac{29\sqrt{3}}{9}\) đạt được khi \(x=y=z=\frac{\sqrt{3}}{3}\)
10x2/x2-100 < 10
<=> 10x2/x2-100 - 10 <0
<=> 10x^2 - 10(x^2-100)/x^2 - 100 <0
<=> 1000/x^2-100 <0
<=> x^2 - 100 <0
<=> x^2 <100
<=> 0 <x <10
=> x nguyên dương => x= 1,2,3,...,9
=> tổng các nghiệm nguyên dương của bpt là 1+2+3+...+9=9.10/2 = 45
Lời giải:
PT $\Leftrightarrow x^2+2x+(2-a)=0$
Để PT có nghiệm thì:
$\Delta'=1-(2-a)\geq 0\Leftrightarrow a\geq 1$
PT có nghiệm dương trong 2 TH:
TH1: PT có 2 nghiệm đều dương
\(\Leftrightarrow \left\{\begin{matrix} S=-2>0\\ P=2-a>0\end{matrix}\right.\) (vô lý)
TH2: PT có 1 nghiệm dương 1 nghiệm âm
\(\Leftrightarrow P=2-a<0\Leftrightarrow a>2\)
Vậy $a>2$
\(x^2+y^2+z^2=2xyz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+z^2=0\)
\(\Leftrightarrow\left(x-y\right)^2+x^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-y=0\\z=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=y\\z=0\end{array}\right.\)
2xyz chứ có phải 2xy đâu :)