Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2xyz=x+y+z$
$2=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}$
Không mất tổng quát giả sử $x\geq y\geq z$
$\Rightarrow xy\geq xz\geq yz$
$\Rightarrow \frac{1}{xy}\leq \frac{1}{xz}\leq \frac{1}{yz}$
$\Rightarrow 2\leq \frac{3}{yz}$$
$\Rightarrow yz\leq \frac{3}{2}$. Mà $yz$ nguyên dương nên $yz=1$
$\Rightarrow y=z=1$. Thay vào pt ban đầu:
$2x=x+2$
$x=2$
Vậy $(x,y,z)=(2,1,1)$ và hoán vị.
\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)
\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)
\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)
\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)
Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)
\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét