K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Mong các bạn làm nhanh hộ mình, mình đang cần gấp.

6 tháng 3 2020

Hình tự vẽ nhé!

a, gEBC=90 vì là góc tạo bởi 2 tia phân giác của 2 góc kề bù (có t/c này nhé)

=>tgAEBF là hcn vì có 3 góc vuông

b, hcn là hình vuông thì có thêm đk là đg chéo là tia p/g của 1 góc=> BA là p/g gEBF=>gABE=45=>ABC=90=>tgABC vuông tại B

c,vì tg AKB vuông tại K, có O( gọi O là giao điểm của EF và AB) là trung điểm EF(theo t/c hcn)

=> OK=OB=OA( theo định lý bổ sung trong tg vuông)

=>OK=OE=OF( vì ob=oa=oe=of)

=>tg EFK vuông tại K ( theo định lý bổ sung đảo)

d, Có gFEB=gOBE ( theo t/c hcn) => gFEB=gEBK =>tg FBKE là hình thang vì có BK//EF

11 tháng 1 2018

a. hạ đương cao AK

suy ra BK=KC=3:2=1.5(cm)

Xét tam giac ABC có góc AKB=90

AK^2+BK^2=AB^2(đl py-ta-go)

AK=\(\dfrac{3\sqrt{3}}{2}\)

SABC=\(\dfrac{1}{2}.\dfrac{3\sqrt{3}}{2}.3=\dfrac{9\sqrt{3}}{4}\)

17 tháng 11 2015

a) Xét tam giác ABD có: góc ABD+ góc BAD = 90( vì tam giác ABD vuông tại D)

                                  mà  góc EAB =góc ABD (so le trong)

                                  => góc BAD + góc BAE = 90

Tứ giác ADBE có: góc BEA=góc EAD= góc ADB=90 

                        => Tứ giác ADBE là hình chữ nhật

( câu b , c bữa sau minh giải nha giờ mình co việc roj)

4 tháng 4 2020

a, Xét △ABM vuông tại A và △DBM vuông tại D

Có: BM là cạnh chung

      ∠ABM = ∠DBM (gt)

=> △ABM = △DBM (ch-gn)

b, Xét △ABC vuông tại A và △DBE vuông tại D

Có: AB = DB (△ABM = △DBM)

      ∠ABC là góc chung

=> △ABC = △DBE (cgv-gnk)

=> AC = DE (2 cạnh tương ứng)

c, Xét △AME vuông tại A và △DMC vuông tại D

Có:  AM = MD (△ABM = △DBM)

   ∠AME = ∠DMC (2 góc đối đỉnh)

=> △AME = △DMC (cgv-gnk)

d, Vì AB = BD (cmt)  => B thuộc đường trung trực của AD

Vì AM = DM (cmt) => M thuộc đường trung trực của AD

=> BM là đường trung trực của AD

=> BM ⊥ AD

e, Xét △DHC vuông tại K và △AKE vuông tại H

Có: DC = AE (△DMC = △AME)

  ∠DCH = ∠AEK (△ABC = △DBE)

=> △DHC = AKE (ch-gn)

f, Xét △AMK vuông tại K và △DMH vuông tại H

Có: AM = MD (cmt)

   ∠AMK = ∠DMH (2 góc đối đỉnh)

=> △AMK = △DMH (ch-gn)

=> MK = MH (2 cạnh tương ứng)

Xét △MKN vuông tại K và △MHN vuông tại H

Có: MK = MH (cmt)

     MN là cạnh chung

=> △MKN = △MHN (ch-cgv)

=> ∠KMN = ∠HMN (2 góc tương ứng)

=> MN là phân giác KMH

g, Ta có: AK + KN = AN và DH + HN = DN

Mà AK = DH (△AMK = △DMH) ; KN = HN (△MKN = △MHN)

=> AN = DN

Xét △BAN và △BDN

Có: AB = BD (cmt)

      AN = DN (cmt)

    BN là cạnh chung

=> △BAN = △BDN (c.c.c)

=> ∠ABN = ∠DBN (2 góc tương ứng)

=> BN là phân giác ABD 

Mà BM là phân giác ABD 

=> BN ≡ BM

=> 3 điểm B, M, N thẳng hàng

h, Để △ADN là tam giác đều mà AN = DN (cmt)

<=> ∠AND = 60o   <=> ∠ANM + ∠MND = 60o

Mà ∠ANM = ∠MND (△BAN = △BDN)

<=> ∠ANM = ∠MND = 30o

Vì AB ⊥ AC (gt) và DH ⊥ AC (gt) => DN ⊥ AC

=> AB // DN

=> ∠ABN = ∠BND (2 góc so le trong) và ∠ANB = ∠NBD (2 góc so le trong)

Mà ∠ANB = ∠BND = 30o (cmt)

=> ∠ABN = ∠NBD = 30o 

=> ∠ABN + ∠NBD = 30o + 30o 

=> ∠ABD = 60o 

=> ∠ABC = 60o

Vậy để △ADN là tam giác đều khi △ABC có ∠ABC = 60o