K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Mong các bạn làm nhanh hộ mình, mình đang cần gấp.

6 tháng 3 2020

Hình tự vẽ nhé!

a, gEBC=90 vì là góc tạo bởi 2 tia phân giác của 2 góc kề bù (có t/c này nhé)

=>tgAEBF là hcn vì có 3 góc vuông

b, hcn là hình vuông thì có thêm đk là đg chéo là tia p/g của 1 góc=> BA là p/g gEBF=>gABE=45=>ABC=90=>tgABC vuông tại B

c,vì tg AKB vuông tại K, có O( gọi O là giao điểm của EF và AB) là trung điểm EF(theo t/c hcn)

=> OK=OB=OA( theo định lý bổ sung trong tg vuông)

=>OK=OE=OF( vì ob=oa=oe=of)

=>tg EFK vuông tại K ( theo định lý bổ sung đảo)

d, Có gFEB=gOBE ( theo t/c hcn) => gFEB=gEBK =>tg FBKE là hình thang vì có BK//EF

21 tháng 9 2020

a) Ta có:

\(\widehat{A}+\widehat{ABC}+\widehat{BCA}=180\)

\(\Rightarrow\widehat{BCA}=180-90-60=30\)

Vì \(BC\perp Cy\Rightarrow\widehat{BCy}=90\)

Mà \(\widehat{BCy}+\widehat{ECF}+\widehat{BCA}=180\)

\(\Rightarrow\widehat{ECF}=180-90-30=60\left(1\right)\)

Vì \(\widehat{FBC}+\widehat{BCA}+\widehat{BFC}=180\)

\(\Rightarrow\widehat{BFC}=180-\frac{\widehat{ABC}}{2}-\widehat{BCA}\)

\(\Rightarrow\widehat{BFC}=60\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\Delta CEF\)là tam giác đều

21 tháng 9 2020

a) Xét ΔABC∆ABC vuông tại AA

ˆABC=60oABC^=60o

⇒ACB=30o⇒ACB=30o

Ta có: BEBE là phân giác của ˆBB^

⇒ˆCBE=12ˆABC=30o⇒CBE^=12ABC^=30o

⇒ˆFEC=ˆECB+ˆEBC=60o⇒FEC^=ECB^+EBC^=60o

Xét ΔCBF∆CBF vuông tại CC có:

ˆCBF=30oCBF^=30o

⇒ˆCFB=60o⇒CFB^=60o

Xét ΔCEF∆CEF có:

ˆFEC=ˆCFB=60oFEC^=CFB^=60o

Do đó ΔCEG∆CEG đều

b) Sửa đề: ABCDABCD là hình thang cân

Ta có:

ˆBAC=ˆBDC=90oBAC^=BDC^=90o

Do đó ABCDABCD là tứ giác nội tiếp

⇒ˆACB=ˆADB=30o⇒ACB^=ADB^=30o

Ta lại có: ˆDBC=ˆACB=30oDBC^=ACB^=30o

nên ˆABD=ˆDBCABD^=DBC^

⇒ABCD⇒ABCD là hình thang đáy AB,CDAB,CD

Mặt khác: ΔDBC∆DBC vuông tại DD có:

ˆDBC=30oDBC^=30o

⇒ˆDCB=60o=ˆABC⇒DCB^=60o=ABC^

Do đó ABCDABCD là hình thang cân

12 tháng 3 2020

A B C K E M y x D

a, xét tứ giác ACBM có: BM // AC (gt) và AM // BC (gt)

=> ACBM là hình bình hành (đn)

b, BE // AD (gt) 

BD _|_ AD (gt)

=> BE _|_ AD  (đl)

=> ^EBD = 90 = ^BDA = ^AEB 

=> ADBE là hình chữ nhật (dh)

c, Tam giác ABC cân tại B (gt) ; BD là đường cao (gt)

=> BD là trung tuyến của tam giác ABC (đl)

=> D là trung điểm của AC (Đn)

D là trung điểm của BK do B đối xứng với K qua D (Gt)

=> BAKC là hình bình hành (dh)

mà BD _|_ AC (Gt)

=> BAKC là hình thoi (dh)

d, có BAKC là hình thoi (câu c)

=> AK // BC (tc)

AM // BC (gt)              

=> A; M; K thẳng hàng (tiên đề Ơclit)            (1)

AK = BC do BAKC là hình thoi  (câu c)

AM = BC do ACBM là hình bình hành (câu a) 

=> AM = MK         và (1)

=> A là trung điểm của KM (đn)

=> M đối xứng với K qua A (đn)

e, BMKC là hình thang (KM // BC)

để BMKC là hình thang cân 

<=> ^BMK = ^MKC (dh)

^BMK =  ^BCA do BMAC là hình bình hành (câu a)

^AKC = ^CBK do AKCB là hình thoi (câu c)

<=> ^ABC = ^ACB 

mà tam giác ABC cân tại B (Gt)

<=> tam giác ABC đều

Bài 2: 

a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)

=>ΔCFE đều

b: Xét tứ giác ABCD có 

\(\widehat{BAC}=\widehat{BDC}=90^0\)

Do đó: ABCD là tứ giác nội tiếp