chứng minh rằng 1/3+1/3^2+1/3^3+...+1/3^99<1/2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NM
0
QT
1
14 tháng 11 2015
M=1/3+1/3^2+...+1/3^99
3M=1+1/3+1/3^2+...+1/3^98
3M+1/3^99=1+1/3+...+1/3^99=1+M
3M-M=1-1/3^99
2M=1-1/3^99
M=(1-1/3^99)/2
Vì 1-1/3^99 <1 nên (1-1/3^99)/2<1/2
Vậy M<1/2
SL
0
IL
0
BC
0
NL
2
DD
2 tháng 8 2016
chắc đề là z M=1/3+1/3^2+1/3^3+....+1/3^99. CMR: M<1/2
Ta có:1/(3^n)+1/(3^(n+1))=2/(3^(n+1))(cái này bạn tự quy đồng ra ra nhé!).
Áp dụng ta có:1-1/3=2/3
1/3-1/(3^2)=2/(3^2)
1/(3^2)-1/(3^3)=2/(3^3)
....
1/(3^98)-1/(3^99)=2/(3^99).
Cộng từng vế các phép tính với nhau ta có:1-1/(3^99)=2M.
Mà 1-1/(3^99)<1 nên 2M<1 nên M<1/2(điều phải chứng minh)
TN
0
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}.\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(\Rightarrow A-\frac{1}{3}A=\left(\frac{1}{3^2}-\frac{1}{3^3}\right)+\left(\frac{1}{3^3}-\frac{1}{3^3}\right)+...+\left(\frac{1}{3}-\frac{1}{3^{100}}\right)\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{100}}< \frac{1}{3}.\)
\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)
\(\Rightarrow A< \frac{1}{2}\left(đpcm\right)\)
Vậy \(A< \frac{1}{2}.\)
Chúc bạn học tốt!