K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

\(a.A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\) 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(2A-A=1-\frac{1}{2^{99}}\)

\(A=1-\frac{1}{2^{99}}< 1\)

\(b.B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{203}{3^{100}}< 3\)

\(A< \frac{3}{4}\)

Ủng hộ mk nha ^_^

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\RightarrowĐPCM\)

24 tháng 3 2016

giúp tui phần b bài này

11 tháng 5 2016

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+..........+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+........+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+........+\frac{1}{3^{99}}\right)\)

\(3A-A=1-\frac{1}{3^{99}}\)

\(\Rightarrow2A=1-\frac{1}{3^{99}}\)

\(\Rightarrow2A<1\)

\(\Rightarrow A<\frac{1}{2}\)

28 tháng 2 2020

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

28 tháng 2 2020

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B

25 tháng 7 2021

 ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết