Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
3C=3.( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )
3C-C=( \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\) ) - ( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )
2C= 1 - \(\frac{1}{3^{99}}\)< 1
\(\Rightarrow\)C= \(\left(1-\frac{1}{3^{99}}\right)\div2\)<\(\frac{1}{2}\)
Điều Phải Chứng Minh
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3C-C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^{99}}\)
\(\Rightarrow2C=1-\frac{1}{3^{99}}\)
\(\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\)
\(2C=3C-C=1-\frac{1}{3^{99}}\Rightarrow C=\left(1-\frac{1}{3^{99}}\right):2=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)
3C =1+1/3 +1/32 +.... + 1/398
3C -C =1- 1/399<1
2 C < 1
C<1/2
tham khảo ở câu hỏi tương tự đó bạn có bài y chan luôn đó nhiên
tick cho mk nha bạn huỳnh châu giang
nếu muốn mk có thể giải cho nhiên
Ta có: \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3C-C=2C=1-\frac{1}{3^{99}}\Rightarrow C=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}^{\left(đpcm\right)}\)
P/s: Giải thích nếu như bạn không hiểu khúc cuối.
Ta có: \(2C=1-\frac{1}{3^{99}}\Rightarrow C=\frac{1}{2}\left(1-\frac{1}{3^{99}}\right)\)
\(=\frac{1}{2}.1-\frac{1}{2}.\frac{1}{3^{99}}=\frac{1}{2}-\frac{1}{2.3^{99}}\)