Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3C =1+1/3 +1/32 +.... + 1/398
3C -C =1- 1/399<1
2 C < 1
C<1/2
tham khảo ở câu hỏi tương tự đó bạn có bài y chan luôn đó nhiên
tick cho mk nha bạn huỳnh châu giang
nếu muốn mk có thể giải cho nhiên
C=\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
3C=3.( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )
3C-C=( \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\) ) - ( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )
2C= 1 - \(\frac{1}{3^{99}}\)< 1
\(\Rightarrow\)C= \(\left(1-\frac{1}{3^{99}}\right)\div2\)<\(\frac{1}{2}\)
Điều Phải Chứng Minh
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3C=3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)
\(\Rightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(\Rightarrow2C=1-\frac{1}{3^{99}}\)
MÀ \(2C=1-\frac{1}{3^{99}}< 1\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
Từ đó ta suy ra điều phải chứng minh
nhân C vs 3 sau đó lấy 3C-C sẽ ra đc 2 C = 1 - 1/399 => C= 1/2 - 1/ (2x399 )
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3C-C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^{99}}\)
\(\Rightarrow2C=1-\frac{1}{3^{99}}\)
\(\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}
\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\)
\(\Rightarrow3C-C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...-\dfrac{1}{3^{99}}\)
\(\Rightarrow2C=1-\dfrac{1}{3^{99}}\)
\(\Rightarrow C=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
Mà \(1-\dfrac{1}{3^{99}}< 1\)
\(\Rightarrow C< \dfrac{1}{2}\) ( đpcm )
\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
\(3C=3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
\(3C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)
\(3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^{99}}\right)\)\(2C=1-\dfrac{1}{3^{99}}\)
\(C=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(C=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}\)
\(C< \dfrac{1}{2}\)
\(\rightarrowđpcm\)
\(\)
Ta có: \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3C-C=2C=1-\frac{1}{3^{99}}\Rightarrow C=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}^{\left(đpcm\right)}\)
P/s: Giải thích nếu như bạn không hiểu khúc cuối.
Ta có: \(2C=1-\frac{1}{3^{99}}\Rightarrow C=\frac{1}{2}\left(1-\frac{1}{3^{99}}\right)\)
\(=\frac{1}{2}.1-\frac{1}{2}.\frac{1}{3^{99}}=\frac{1}{2}-\frac{1}{2.3^{99}}\)