K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2019

giúp mk ik mà TT bucminh

11 tháng 4 2015

\(\Rightarrow2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2014}\)

\(\Rightarrow2A-A=A=1-\left(\frac{1}{2}\right)^{2015}\)

Với B tương tự nhưng là lấy 3B

19 tháng 7 2015

\(A=\left(\frac{1}{1^2}-1\right)\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2015^2}-1\right)\left(\frac{1}{2016^2}-1\right)\)

\(=0.\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2015^2}-1\right)\left(\frac{1}{2016^2}-1\right)=0>-\frac{1}{2}\)

suy ra A>B

3 tháng 4 2018

Ta có : 

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)

\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)

\(A=\frac{1}{2016}\)

Vậy \(A=\frac{1}{2016}\)

Chúc bạn học tốt ~ 

8 tháng 6 2018

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)

\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)

\(\Rightarrow A=\frac{1}{2016}\)

13 tháng 8 2017

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{102}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{101}{102}=\frac{1}{102}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}=\frac{C}{D}\)

Ta có: \(D=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)(có 2015 số hạng)

          \(D=\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)-2015\)

          \(D=2016+\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}-2015\)

          \(D=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+1=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+\frac{2016}{2016}\)

          \(D=2016\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)=2016C\)

Vậy \(B=\frac{C}{D}=\frac{C}{2016C}=\frac{1}{2016}\)

14 tháng 8 2017

\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{102}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{101}{102}=\frac{1\cdot2\cdot3\cdot....\cdot101}{2\cdot3\cdot4\cdot....\cdot102}\)

\(A=\frac{1}{102}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)+1}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2016}{2}+...+\frac{2016}{2015}+\frac{2016}{2016}}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}=\frac{1}{2016}\)