Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)..\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(-\frac{3}{2^2}\right)\left(\frac{-8}{3^2}\right)\left(\frac{-15}{4^2}\right)...\left(\frac{-\left(1-2017^2\right)}{2017^2}\right)\)
( có 2016 thừa số)
\(A=\frac{3.8.15...\left(1-2017^2\right)}{2^2.3^2.4^2...2017^2}\)
\(A=\frac{\left(1.3\right)\left(2.4\right)...\left(2016.2018\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(2017.2017\right)}\)
\(A=\frac{\left(1.2.3....2016\right)\left(3.4.5....2018\right)}{\left(2.3.4...2017\right)\left(2.3.4...2017\right)}\)
\(A=\frac{1.2018}{2017.2}\)
\(A=\frac{1009}{2017}\)
Ta có : \(\frac{1009}{2017}>0\) (vì tử và mẫu cùng dấu)
\(\frac{-1}{2}< 0\) (vì tử và mẫu khác dấu)
Vậy A>B
a.
\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
\(x=\frac{3}{4}\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)
b.
\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
TH1:
\(\frac{1}{2}x-3=0\)
\(\frac{1}{2}x=3\)
\(x=3\div\frac{1}{2}\)
\(x=3\times2\)
\(x=6\)
TH2:
\(\frac{2}{3}x+\frac{1}{2}=0\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)
c.
\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)
\(-\frac{4}{3}x=\frac{13}{3}\)
\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)
\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)
\(x=-\frac{13}{4}\)
d.
\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)
\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)
\(x=5\)
\(A=\left(\frac{1}{1^2}-1\right)\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2015^2}-1\right)\left(\frac{1}{2016^2}-1\right)\)
\(=0.\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2015^2}-1\right)\left(\frac{1}{2016^2}-1\right)=0>-\frac{1}{2}\)
suy ra A>B
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{102}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{101}{102}=\frac{1}{102}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}=\frac{C}{D}\)
Ta có: \(D=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)(có 2015 số hạng)
\(D=\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)-2015\)
\(D=2016+\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}-2015\)
\(D=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+1=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+\frac{2016}{2016}\)
\(D=2016\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)=2016C\)
Vậy \(B=\frac{C}{D}=\frac{C}{2016C}=\frac{1}{2016}\)
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{102}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{101}{102}=\frac{1\cdot2\cdot3\cdot....\cdot101}{2\cdot3\cdot4\cdot....\cdot102}\)
\(A=\frac{1}{102}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)+1}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2016}{2}+...+\frac{2016}{2015}+\frac{2016}{2016}}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}=\frac{1}{2016}\)
\(\frac{10^{2016}+2^3}{9}=\frac{10^{2016}-1}{9}+\frac{2^3+1}{9}=\left(1+10+10^2+...+10^{2015}\right)+1\in N.\)
Ta có \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2014^2}\right)\)
\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2014^2-1}{2014^2}\right)\)
\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(2014-1\right)\left(2014+1\right)}{2014^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2013.2015}{2014.2014}\)
\(=\frac{1.2...2013}{2.3...2014}.\frac{3.4...2015}{2.3...2014}\)
\(=\frac{1}{2014}.\frac{2015}{2}\)
\(=\frac{2015}{2014.2}>\frac{1}{2}\)hay -A>1/2
=>\(A< \frac{-1}{2}\)hay A<B
giúp mk ik mà TT