Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)
Câu b:
\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)
= \(\frac{63}{20}+\frac{3}{5}\)
= \(\frac{15}{4}\)
\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)
\(\frac{25}{8}:\frac{5}{6}\)
\(\frac{25}{8}.\frac{6}{5}\)
\(\frac{30}{8}\)
\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x\left(1-\frac{1}{6}\right)\)
= \(\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x\frac{5}{6}\)
=\(\frac{1x2x3x4x5}{2x3x4x5x6}\)
Loại 2x3x4x5 vì cả 2 vế cùng có
=\(\frac{1}{6}\)
\(\left(1-\frac{1}{2}\right)\) x \(\left(1-\frac{1}{3}\right)\)x \(\left(1-\frac{1}{4}\right)\)x \(\left(1-\frac{1}{5}\right)\)x \(\left(1-\frac{1}{6}\right)\)
\(=\)\(\frac{1}{2}\) x \(\frac{2}{3}\)x \(\frac{3}{4}\)x \(\frac{4}{5}\)x \(\frac{5}{6}\)
\(=\)\(\frac{1}{6}\)
a= (\(\frac{2}{5}\)+\(\frac{2}{9}\)+\(\frac{2}{11}\)\(\times\)\(\frac{5}{7}\)\(+\frac{7}{9}\)\(+\frac{7}{11}\)\()\)
\(x\)là dấu nhân hả bạn? Nếu vậy thì mk làm cho nhé
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.......\cdot\frac{17}{18}\cdot\frac{18}{19}\cdot\frac{19}{20}=\frac{1}{20}\)
Vậy \(A=\frac{1}{20}\)
\(B=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot........\cdot1\frac{1}{2005}\cdot1\frac{1}{2006}\cdot1\frac{1}{2007}\)
\(B=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot......\cdot\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot\frac{2008}{2007}=\frac{2008}{2}=1004\)
Vậy \(B=1004\)
DẤU CHẤM LÀ DẤU NHÂN
a,
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)
b, \(1\frac{1}{2}.1\frac{1}{3}....1\frac{1}{2017}=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}=\frac{2018}{2}=1009\)
Ta có
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times....\times\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{9}{10}\)
\(=\frac{1}{10}\)