K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

a+b+c=0 \(\Rightarrow a+b=-c; b+c=-a;a+c=-b\)

Thay vào A ta được

\(A=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)

13 tháng 1 2016

áp dụng tính chất của DTS bằng nhau ta được:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}\)

\(=\frac{a+b+c}{a+b+c}=1\)

Suy ra: \(\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)

\(\frac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\)

\(\frac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)

=>\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)

\(=\frac{2c}{a}.\frac{2a}{b}.\frac{2b}{c}=8\)

17 tháng 12 2019

Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath

21 tháng 4 2016

Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )

Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )

Khó quá do anh thien

21 tháng 4 2016

\(A=3+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

8 tháng 8 2019

chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*

9 tháng 3 2021
Tôi nghĩ Minh nói đúng đấy,bạn đủ thông minh để làm đấy