Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
\(B=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a}{a}+\frac{a}{a}+\frac{a}{a}=3\)
Áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\left(x,y,z\ne0\right)\)
\(\Rightarrow a=b=c\)
B=1+1+1=3
Hok tot
Xét \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\Rightarrow M=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)
Xét \(a+b+c\ne0\) ta có:\(\frac{a-b+c}{b}=\frac{b-c+a}{c}=\frac{c-a+b}{a}=\frac{a-b+c+b-c+a+c-a+b}{a+b+c}=1\)
\(\Rightarrow\hept{\begin{cases}a-b+c=b\\b-c+a=c\\c-a+b=a\end{cases}}\Rightarrow\hept{\begin{cases}a+c=2b\\a+b=2c\\b+c=2a\end{cases}}\Rightarrow M=\frac{2a.2b.2c}{abc}=8\)
Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)
\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)=b\left(c+a\right)\)
\(\Rightarrow ac+bc=ab+ac=bc+ab\)
Lại có: \(ac+bc=ab+ac\)\(\Rightarrow bc=ab\)\(\Rightarrow a=c\) (1)
\(ab+ac=bc+ab\)\(\Rightarrow ac=bc\)\(\Rightarrow a=b\) (2)
Từ (1) và (2) \(\Rightarrow a=b=c\)
Ta có: \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+b.b^2+c.c^2}{a^3+b^3+c^3}=\frac{a^3+b^3+c^3}{a^3+b^3+c^3}=1\)
\(A=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
a+b+c=0 \(\Rightarrow a+b=-c; b+c=-a;a+c=-b\)
Thay vào A ta được
\(A=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\) => \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
=> A = 2 + 2+ 2 = 6
vậy...
\(\text{Giải :}\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
\(\Rightarrow\text{A = 2 + 2 + 2 = 2 . 3 = 6}\)
\(\text{Vậy ....................}\)