K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath

13 tháng 1 2016

áp dụng tính chất của DTS bằng nhau ta được:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}\)

\(=\frac{a+b+c}{a+b+c}=1\)

Suy ra: \(\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)

\(\frac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\)

\(\frac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)

=>\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)

\(=\frac{2c}{a}.\frac{2a}{b}.\frac{2b}{c}=8\)

\(A=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

a+b+c=0 \(\Rightarrow a+b=-c; b+c=-a;a+c=-b\)

Thay vào A ta được

\(A=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)

21 tháng 4 2016

Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )

Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )

Khó quá do anh thien

21 tháng 4 2016

\(A=3+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

22 tháng 4 2016

vì a+b+c=0 => a+b= -c; b+c=-a; c+a=-b

(1+a/b)(1+b/c)(1+c/a)

=(a+b/b)(b+c/c)(a+c/a)

= (-c/b)(-a/c)(-b/a)

=-1

22 tháng 4 2016

Thay a = -2 ; b = 1 ; c = 1 ( vì -2 + 1 + 1 = 0 )

Ta có : \(A=\left(1+\frac{-2}{1}\right)\left(1+\frac{1}{1}\right)\left(1+\frac{1}{-2}\right)\)

           \(A=-1.2..\frac{1}{2}\)

           \(A=-1\)

\(1\)